ﻻ يوجد ملخص باللغة العربية
The ETAS model is widely employed to model the spatio-temporal distribution of earthquakes, generally using spatially invariant parameters. We propose an efficient method for the estimation of spatially varying parameters, using the Expectation-Maximization (EM) algorithm and spatial Voronoi tessellation ensembles. We use the Bayesian Information Criterion (BIC) to rank inverted models given their likelihood and complexity and select the best models to finally compute an ensemble model at any location. Using a synthetic catalog, we also check that the proposed method correctly inverts the known parameters. We apply the proposed method to earthquakes included in the ANSS catalog that occurred within the time period 1981-2015 in a spatial polygon around California. The results indicate a significant spatial variation of the ETAS parameters. We find that the efficiency of earthquakes to trigger future ones (quantified by the branching ratio) positively correlates with surface heat flow. In contrast, the rate of earthquakes triggered by far-field tectonic loading or background seismicity rate shows no such correlation, suggesting the relevance of triggering possibly through fluid-induced activation. Furthermore, the branching ratio and background seismicity rate are found to be uncorrelated with hypocentral depths, indicating that the seismic coupling remains invariant of hypocentral depths in the study region. Additionally, triggering seems to be mostly dominated by small earthquakes. Consequently, the static stress change studies should not only focus on the Coulomb stress changes caused by specific moderate to large earthquakes but also account for the secondary static stress changes caused by smaller earthquakes.
We investigate the possibility to extract information contained in seismic waveforms propagating in fluid-filled porous media by developing and using a full waveform inversion procedure valid for layered structures. To reach this objective, we first
The aftershock productivity law, first described by Utsu in 1970, is an exponential function of the form K=K0.exp({alpha}M) where K is the number of aftershocks, M the mainshock magnitude, and {alpha} the productivity parameter. The Utsu law remains
In this paper we propose a novel SEIR stochastic epidemic model. A distinguishing feature of this new model is that it allows us to consider a set up under general latency and infectious period distributions. To some extent, queuing systems with infi
29 August 2018: Artificial intelligence nails predictions of earthquake aftershocks. This Nature News headline is based on the results of DeVries et al. (2018) who forecasted the spatial distribution of aftershocks using Deep Learning (DL) and static
We investigate the relationship between synoptic/local meteorological patterns and PM10 air pollution levels in the metropolitan area of Naples, Italy. We found that severe air pollution crises occurred when the 850 and 500 hpa geopotential heights a