ﻻ يوجد ملخص باللغة العربية
We investigate the thickness-dependent electronic structure of ultrathin SrIrO$_3$ and discover a transition from a semimetallic to a correlated insulating state below 4 unit cells. Low-temperature magnetoconductance measurements show that spin fluctuations in the semimetallic state are significantly enhanced while approaching the transition point. The electronic structure is further studied by scanning tunneling spectroscopy, showing that 4 unit cells SrIrO$_3$ is on the verge of a gap opening. Our density functional theory calculations reproduce the critical thickness of the transition and show that the opening of a gap in ultrathin SrIrO$_3$ is accompanied by antiferromagnetic order.
The interplay of electronic correlations, multi-orbital excitations, and strong spin-orbit coupling is a fertile ground for new states of matter in quantum materials. Here, we report on a confocal Raman scattering study of momentum-resolved charge dy
SrIrO$_3$ crystallizes in a monoclinic structure of distorted hexagonal perovskite at ambient pressure. The transport measurements show that the monoclinic SrIrO$_3$ is a low-carrier density semimetal, as in the orthorhombic perovskite polymorph. The
Upon reduction of the film thickness we observe a metal-insulator transition in epitaxially stabilized, spin-orbit coupled SrIrO$_3$ ultrathin films. By comparison of the experimental electronic dispersions with density functional theory at various l
We employ reactive molecular-beam epitaxy to synthesize the metastable perovskite SrIrO$_{3}$ and utilize {it in situ} angle-resolved photoemission to reveal its electronic structure as an exotic narrow-band semimetal. We discover remarkably narrow b
Electron transport coupled with magnetism has attracted attention over the years as exemplified in anomalous Hall effect due to a Berry phase in momentum space. Another type of unconventional Hall effect -- topological Hall effect, originating from t