ترغب بنشر مسار تعليمي؟ اضغط هنا

LBT observations of compact star-forming galaxies with extremely high [OIII]/[OII] flux ratios: HeI emission-line ratios as diagnostics of Lyman continuum leakage

80   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present Large Binocular Telescope spectrophotometric observations of five low-redshift (z<0.070) compact star-forming galaxies (CSFGs) with extremely high emission-line ratios O32 = [OIII]5007/[OII]3727, ranging from 23 to 43. Galaxies with such high O32 are thought to be promising candidates for leaking large amounts of Lyman continuum (LyC) radiation and, at high redshifts, for contributing to the reionization of the Universe. The equivalent widths EW(Hbeta) of the Hbeta emission line in the studied galaxies are very high, ~350-520A, indicating very young ages for the star formation bursts, <3 Myr. All galaxies are characterized by low oxygen abundances 12+logO/H = 7.46 - 7.79 and low masses Mstar~10^6-10^7 Msun, much lower than the Mstar for known low-redshift LyC leaking galaxies, but probably more typical of the hypothetical population of low-luminosity dwarf LyC leakers at high redshifts. A broad Halpha emission line is detected in the spectra of all CSFGs, possibly related to expansion motions of supernova remnants. Such rapid ionized gas motions would facilitate the escape of the resonant Ly$alpha$ emission from the galaxy. We show that high O32 may not be a sufficient condition for LyC leakage and propose new diagnostics based on the HeI 3889/6678 and 7065/6678 emission-line flux ratios. Using these diagnostics we find that three CSFGs in our sample are likely to have density-bounded HII regions and are thus leaking large amounts of LyC radiation. The amount of leaking LyC radiation is probably much lower in the other two CSFGs.



قيم البحث

اقرأ أيضاً

76 - Y. I. Izotov 2018
We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of five star-forming galaxies at redshifts z in the range 0.2993-0.4317 and with high emission-line flux ratios O32=[OIII]5007/[OII]3727 ~ 8-27 aiming to detect the Lyman continuum (LyC) emission. We detect LyC emission in all galaxies with the escape fractions fesc(LyC) in a range of 2-72 per cent. A narrow Ly-alpha emission line with two peaks in four galaxies and with three peaks in one object is seen in medium-resolution COS spectra with a velocity separation between the peaks Vsep varying from ~153 km/s to ~345 km/s. We find a general increase of the LyC escape fraction with increasing O32 and decreasing stellar mass M*, but with a large scatter of fesc(LyC). A tight anti-correlation is found between fesc(LyC) and Vsep making Vsep a good parameter for the indirect determination of the LyC escape fraction. We argue that one possible source driving the escape of ionizing radiation is stellar winds and radiation from hot massive stars.
We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of eight compact star-forming galaxies at redshifts z=0.02811-0.06540, with low oxygen abundances 12+log(O/H)=7.43-7.82 and extremely high emission-line f lux ratios O32=[OIII]5007/[OII]3727~22-39, aiming to study the properties of Ly-alpha emission in such conditions. We find a diversity in Ly-alpha properties. In five galaxies Ly-alpha emission line is strong, with equivalent width (EW) in the range 45-190A. In the remaining galaxies, weak Ly-alpha emission with EW(Ly-alpha)~2-7A is superposed on a broad Ly-alpha absorption line, indicating a high neutral hydrogen column density N(HI)~(1-3)x10^21 cm^-2. We examine the relation between the Ly-alpha escape fraction fesc(Ly-alpha) and the Lyman continuum escape fraction fesc(LyC), using direct measures of the latter in eleven low-redshift LyC leakers, to verify whether fesc(Ly-alpha) can be an indirect measure of escaping LyC radiation. The usefulness of O32, of the Ly-alpha equivalent width EW(Ly-alpha) and of the Ly-alpha peak separation Vsep as indirect indicators of Ly-alpha leakage is also discussed. It is shown that there is no correlation between O32 and fesc(Ly-alpha). We find an increase of fesc(Ly-alpha) with increasing EW(Ly-alpha) for EW(Ly-alpha)<100A, but for higher EW(Ly-alpha)>150A the fesc(Ly-alpha) is nearly constant attaining the value of ~0.25. We find an anticorrelation between fesc(Ly-alpha) and Vsep, though not as tight as the one found earlier between fesc(LyC) and Vsep. This finding makes Vsep a promising indirect indicator of both the Ly-alpha and ionizing radiation leakage.
We present a study of the [OIII]5007/[OII]3727 (O32) ratios of star-forming galaxies drawn from MUSE data spanning a redshift range 0.28<z<0.85. Recently discovered Lyman continuum (LyC) emitters have extremely high oxygen line ratios: O32>4. Here we aim to understand the properties and the occurrences of galaxies with such high line ratios. Combining data from several MUSE GTO programmes, we select a population of star-forming galaxies with bright emission lines, from which we draw 406 galaxies for our analysis based on their position in the z-dependent star formation rate (SFR) - stellar mass (M*) plane. Out of this sample 15 are identified as extreme oxygen emitters based on their O32 ratios (3.7%) and 104 galaxies have O32>1 (26%). Our analysis shows no significant correlation between M*, SFR, and the distance from the SFR-M* relation with O32. We find a decrease in the fraction of galaxies with O32>1 with increasing M*, however, this is most likely a result of the relationship between O32 and metallicity, rather than between O32 and M*. We draw a comparison sample of local analogues with <z>~0.03 from SDSS, and find similar incidence rates for this sample. In order to investigate the evolution in the fraction of high O32 emitters with redshift, we bin the sample into three redshift subsamples of equal number, but find no evidence for a dependence on redshift. Furthermore, we compare the observed line ratios with those predicted by nebular models with no LyC escape and find that most of the extreme oxygen emitters can be reproduced by low metallicity models. The remaining galaxies are likely LyC emitter candidates. Finally, based on a comparison between electron temperature estimates from the [OIII4363]/[OIII]5007 ratio of the extreme oxygen emitters and nebular models, we argue that the galaxies with the most extreme O32 ratios have young light-weighted ages.
111 - Y. I. Izotov 2016
Following our first detection reported in Izotov et al. (2016), we present the detection of Lyman continuum (LyC) radiation of four other compact star-forming galaxies observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Teles cope (HST). These galaxies, at redshifts of z~0.3, are characterized by high emission-line flux ratios [OIII]5007/[OII]3727 > 5. The escape fractions of the LyC radiation fesc(LyC) in these galaxies are in the range of ~6%-13%, the highest values found so far in low-redshift star-forming galaxies. Narrow double-peaked Lyalpha emission lines are detected in the spectra of all four galaxies, compatible with predictions for Lyman continuum leakers. We find escape fractions of Lyalpha, fesc(Lyalpha) ~20%-40%, among the highest known for Lyalpha emitters (LAEs). Surface brightness profiles produced from the COS acquisition images reveal bright star-forming regions in the center and exponential discs in the outskirts with disc scale lengths alpha in the range ~0.6-1.4 kpc. Our galaxies are characterized by low metallicity, ~1/8-1/5 solar, low stellar mass ~(0.2 - 4)e9 Msun, high star formation rates SFR~14-36 Msun/yr, and high SFR densities Sigma~2-35 Msun/yr/kpc^2. These properties are comparable to those of high-redshift star-forming galaxies. Finally, our observations, combined with our first detection reported in Izotov et al. (2016), reveal that a selection for compact star-forming galaxies showing high [OIII]5007/[OII]3727 ratios appears to pick up very efficiently sources with escaping Lyman continuum radiation: all five of our selected galaxies are LyC leakers.
Recent state-of-the-art calculations of A-values and electron impact excitation rates for Fe III are used in conjunction with the Cloudy modeling code to derive emission line intensity ratios for optical transitions among the fine-structure levels of the 3d$^6$ configuration. A comparison of these with high resolution, high signal-to-noise spectra of gaseous nebulae reveals that previous discrepancies found between theory and observation are not fully resolved by the latest atomic data. Blending is ruled out as a likely cause of the discrepancies, because temperature- and density-independent ratios (arising from lines with common upper levels) match well with those predicted by theory. For a typical nebular plasma with electron temperature $T_{rm e} = 9000$ K and electron density $rm N_{e}=10^4 , cm^{-3}$, cascading of electrons from the levels $rm ^3G_5$, $rm ^3G_4$ and $rm ^3G_3$ plays an important role in determining the populations of lower levels, such as $rm ^3F_4$, which provide the density diagnostic emission lines of Fe III, such as $rm ^5D_4$ - $rm ^3F_4$ at 4658 AA. Hence further work on the A-values for these transitions is recommended, ideally including measurements if possible. However, some Fe III ratios do provide reliable $N_{rm e}$-diagnostics, such as 4986/4658. The Fe III cooling function calculated with Cloudy using the most recent atomic data is found to be significantly greater at $T_e$ $simeq$ 30000 K than predicted with the existing Cloudy model. This is due to the presence of additional emission lines with the new data, particularly in the 1000--4000 AA wavelength region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا