ﻻ يوجد ملخص باللغة العربية
We prove that the set of fiber-bunched $SL(2,mathbb{R})$-valued H{o}lder cocycles with nonvanishing Lyapunov exponents over a volume preserving, accessible and center-bunched partially hyperbolic diffeomorphism is open. Moreover, we present an example showing that this is no longer true if we do not assume acessibility in the base dynamics.
Criteria for the simplicity of the Lyapunov spectra of linear cocycles have been found by Furstenberg, Guivarch-Raugi, Goldsheid-Margulis and, more recently, Bonatti-Viana and Avila-Viana. In all the cases, the authors consider cocycles over hyperbol
We prove that in an open and dense set, Symplectic linear cocycles over time one maps of Anosov flows, have positive Lyapunov exponents for SRB measures.
We prove that generic fiber-bunched and Holder continuous linear cocycles over a non-uniformly hyperbolic system endowed with a u-Gibbs measure have simple Lyapunov spectrum. This gives an affirmative answer to a conjecture proposed by Viana in the context of fiber-bunched cocycles.
In these notes we prove that the $s$ or $u$-states of cocycles over partially hyperbolic maps are closed in the space of invariant measures.
In an algebraic family of rational maps of $mathbb{P}^1$, we show that, for almost every parameter for the trace of the bifurcation current of a marked critical value, the critical value is Collet-Eckmann. This extends previous results of Graczyk and