ﻻ يوجد ملخص باللغة العربية
The DArk Matter Particle Explorer (DAMPE), one of the four scientific space science missions within the framework of the Strategic Pioneer Program on Space Science of the Chinese Academy of Sciences, is a general purpose high energy cosmic-ray and gamma-ray observatory, which was successfully launched on December 17th, 2015 from the Jiuquan Satellite Launch Center. The DAMPE scientific objectives include the study of galactic cosmic rays up to $sim 10$ TeV and hundreds of TeV for electrons/gammas and nuclei respectively, and the search for dark matter signatures in their spectra. In this paper we illustrate the layout of the DAMPE instrument, and discuss the results of beam tests and calibrations performed on ground. Finally we present the expected performance in space and give an overview of the mission key scientific goals.
The DArk Matter Particle Explorer (DAMPE), a satellite-based cosmic ray and gamma-ray detector, was launched on December 17, 2015, and began its on-orbit operation on December 24, 2015. In this work we document the on-orbit calibration procedures use
The DArk Matter Particle Explorer (DAMPE) can measure $gamma$-rays in the energy range from a few GeV to about 10 TeV. The direction of each $gamma$-ray is reconstructed with respect to the reference system of the DAMPE payload. In this paper, we ado
The GAPS experiment is designed to carry out a sensitive dark matter search by measuring low-energy cosmic ray antideuterons and antiprotons. GAPS will provide a new avenue to access a wide range of dark matter models and masses that is complementary
The XENON1T experiment at the Laboratori Nazionali del Gran Sasso (LNGS) is the first WIMP dark matter detector operating with a liquid xenon target mass above the ton-scale. Out of its 3.2t liquid xenon inventory, 2.0t constitute the active target o
The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is designed to observe cosmic neutrinos (CNs) above 20 PeV and ultra-high energy cosmic rays (UHECRs) above 20 EeV over the full sky. The POEMMA mission calls for two identical satellites fly