ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hawking-Penrose singularity theorem for $C^{1,1}$-Lorentzian metrics

103   0   0.0 ( 0 )
 نشر من قبل Melanie Graf
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the Hawking--Penrose singularity theorem, and the generalisation of this theorem due to Galloway and Senovilla, continue to hold for Lorentzian metrics that are of $C^{1, 1}$-regularity. We formulate appropriate wea

قيم البحث

اقرأ أيضاً

We provide a detailed proof of Hawkings singularity theorem in the regularity class $C^{1,1}$, i.e., for spacetime metrics possessing locally Lipschitz continuous first derivatives. The proof uses recent results in $C^{1,1}$-causality theory and is b ased on regularisation techniques adapted to the causal structure.
We extend the validity of the Penrose singularity theorem to spacetime metrics of regularity $C^{1,1}$. The proof is based on regularisation techniques, combined with recent results in low regularity causality theory.
We show that many standard results of Lorentzian causality theory remain valid if the regularity of the metric is reduced to $C^{1,1}$. Our approach is based on regularisations of the metric adapted to the causal structure.
We prove a Gannon-Lee theorem for non-globally hyperbolic Lo-rentzian metrics of regularity $C^1$, the most general regularity class currently available in the context of the classical singularity theorems. Along the way we also prove that any maximi zing causal curve in a $C^1$-spacetime is a geodesic and hence of $C^2$-regularity.
We prove several geometric theorems using tools from the theory of convex optimization. In the Riemannian setting, we prove the max flow-min cut theorem for boundary regions, applied recently to develop a bit-thread interpretation of holographic enta nglement entropies. We also prove various properties of the max flow and min cut, including respective nesting properties. In the Lorentzian setting, we prove the analogous min flow-max cut theorem, which states that the volume of a maximal slice equals the flux of a minimal flow, where a flow is defined as a divergenceless timelike vector field with norm at least 1. This theorem includes as a special case a continuum version of Dilworths theorem from the theory of partially ordered sets. We include a brief review of the necessary tools from the theory of convex optimization, in particular Lagrangian duality and convex relaxation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا