ﻻ يوجد ملخص باللغة العربية
We consider the problem of the nonlinear response of a Rayleigh beam to the passage of a train of forces moving with stochastic velocity. The Fourier transform and the theory of residues is used to estimate the mean-square amplitude of the beam, while the stochastic averaging method gives the stationary probability density function of the oscillations amplitude. The analysis shows that the effect of the load random velocities is highly nonlinear, leading to a nonmonotonic behavior of the mean amplitude versus the intensity of the stochastic term and of the load weight. The analytic approach is also checked with numerical simulations. The effect of loads number on the system response is numerically investigated.
Collagen is a key structural protein in the human body, which undergoes mineralization during the formation of hard tissues. Earlier studies have described the mechanical behavior of bone at different scales highlighting material features across hier
We present an experimental method for the generation of amplitude squeezed high-order vector beams. The light is modified twice by a spatial light modulator such that the vector beam is created by means of a collinear interferometric technique. A maj
A long-standing, though ill-understood problem in rocket dynamics, rocket response to random, altitude-dependent nozzle side-loads, is investigated. Side loads arise during low altitude flight due to random, asymmetric, shock-induced separation of in
We investigate the propagation of Rayleigh waves in a half-space coupled to a nonlinear metasurface. The metasurface consists of an array of nonlinear oscillators attached to the free surface of a homogeneous substrate. We describe, analytically and
A stochastic approach is implemented to address the problem of a marine structure exposed to water wave impacts. The focus is on (i) the average frequency of wave impacts, and (ii) the related probability distribution of impact kinematic variables. T