ترغب بنشر مسار تعليمي؟ اضغط هنا

Solid-state-processing of d_PVDF

91   0   0.0 ( 0 )
 نشر من قبل Jaime Mart\\'in
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Poly(vinylidene fluoride) (PVDF) has long been regarded as an ideal piezoelectric plastic because it exhibits a large piezoelectric response and a high thermal stability. However, the realization of piezoelectric PVDF elements has proven to be problematic, amongst others, due to the lack of industrially-scalable methods to process PVDF into the appropriate polar crystalline forms. Here, we show that fully piezoelectric PVDF films can be produced via a single-step process that exploits the fact that PVDF can be molded at temperatures below its melting temperature, i.e. via solid-state-processing. We demonstrate that we thereby produce d_PVDF, the piezoelectric charge coefficient of which is comparable to that of biaxially stretched d_PVDF. We expect that the simplicity and scalability of solid-state processing combined with the excellent piezoelectric properties of our PVDF structures will provide new opportunities for this commodity polymer and will open a range of possibilities for future, large-scale, industrial production of plastic piezoelectric films

قيم البحث

اقرأ أيضاً

94 - G. Grinstein , Yuhai Tu , 1998
We analyze the stability of a planar solid-solid interface at which a chemical reaction occurs. Examples include oxidation, nitridation, or silicide formation. Using a continuum model, including a general formula for the stress-dependence of the reac tion rate, we show that stress effects can render a planar interface dynamically unstable with respect to perturbations of intermediate wavelength.
The negatively-charged nitrogen vacancy (NV$^-$) centre in diamond is a remarkable optical quantum sensor for a range of applications including, nanoscale thermometry, magnetometry, single photon generation, quantum computing, and communication. Howe ver, to date the performance of these techniques using NV$^-$ centres has been limited by the thermally-induced spectral wandering of NV$^-$ centre photoluminescence due to detrimental photothermal heating. Here we demonstrate that solid-state laser refrigeration can be used to enable rapid (ms) optical temperature control of nitrogen vacancy doped nanodiamond (NV$^-$:ND) quantum sensors in both atmospheric and textit{in vacuo} conditions. Nanodiamonds are attached to ceramic microcrystals including 10% ytterbium doped yttrium lithium fluoride (Yb:LiYF$_4$) and sodium yttrium fluoride (Yb:NaYF$_4$) by van der Waals bonding. The fluoride crystals were cooled through the efficient emission of upconverted infrared photons excited by a focused 1020 nm laser beam. Heat transfer to the ceramic microcrystals cooled the adjacent NV$^-$:NDs by 10 and 27 K at atmospheric pressure and $sim$10$^{-3}$ Torr, respectively. The temperature of the NV$^-$:NDs was measured using both Debye-Waller factor (DWF) thermometry and optically detected magnetic resonance (ODMR), which agree with the temperature of the laser cooled ceramic microcrystal. Stabilization of thermally-induced spectral wandering of the NV$^{-}$ zero-phonon-line (ZPL) is achieved by modulating the 1020 nm laser irradiance. The demonstrated cooling of NV$^-$:NDs using an optically cooled microcrystal opens up new possibilities for rapid feedback-controlled cooling of a wide range of nanoscale quantum materials.
Information technologies require entangling data stability with encryption for a next generation of secure data storage. Current magnetic memories, ranging from low-density stripes up to high-density hard drives, can ultimately be detected using rout inely available probes or manipulated by external magnetic perturbations. Antiferromagnetic resistors feature unrivalled robustness but the stable resistive states reported scarcely differ by more than a fraction of a percent at room temperature. Here we show that the metamagnetic (ferromagnetic to antiferromagnetic) transition in intermetallic Fe0.50Rh0.50 can be electrically controlled in a magnetoelectric heterostructure to reveal or cloak a given ferromagnetic state. From an aligned ferromagnetic phase, magnetic states are frozen into the antiferromagnetic phase by the application of an electric field, thus eliminating the stray field and likewise making it insensitive to external magnetic field. Application of a reverse electric field reverts the antiferromagnetic state to the original ferromagnetic state. Our work demonstrates the building blocks of a feasible, extremely stable, non-volatile, electrically addressable, low-energy dissipation, magnetoelectric multiferroic memory.
Ternary nitride materials hold promise for many optical, electronic, and refractory applications yet their preparation via solid-state synthesis remains challenging. Often, high pressures or reactive gasses are used to manipulate the effective chemic al potential of nitrogen, yet these strategies require specialized equipment. Here we report on a simple two-step synthesis using ion-exchange reactions that yield rocksalt-derived MgZrN$_2$ and Mg$_2$NbN$_3$, as well as layered MgMoN$_2$. All three compounds show nearly temperature-independent and weak paramagnetic responses to an applied magnetic field at cryogenic temperatures indicating phase pure products. The key to synthesizing these ternary materials is an initial low-temperature step (300-450 $^{circ}$C) to promote Mg-M-N bond formation. Then the products are annealed (800-900 $^{circ}$C) to increase crystalline domains of the ternary product. Calorimetry experiments reveal that initial reaction temperatures are determined by phase transitions of reaction precursors, whereas heating directly to high temperatures results in decomposition. These two-step reactions provide a rational guide to material discovery of other bulk ternary nitrides.
Materials featuring anomalous suppression of density fluctuations over large length scales are emerging systems known as disordered hyperuniform. The underlying hidden order renders them appealing for several applications, such as light management an d topologically protected electronic states. These applications require scalable fabrication, which is hard to achieve with available top-down approaches. Theoretically, it is known that spinodal decomposition can lead to disordered hyperuniform architectures. Spontaneous formation of stable patterns could thus be a viable path for the bottom-up fabrication of these materials. Here we show that mono-crystalline semiconductor-based structures, in particular Si$_{1-x}$Ge$_{x}$ layers deposited on silicon-on-insulator substrates, can undergo spinodal solid-state dewetting featuring correlated disorder with an effective hyperuniform character. Nano- to micro-metric sized structures targeting specific morphologies and hyperuniform character can be obtained, proving the generality of the approach and paving the way for technological applications of disordered hyperuniform metamaterials. Phase-field simulations explain the underlying non-linear dynamics and the physical origin of the emerging patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا