ﻻ يوجد ملخص باللغة العربية
The Kardar-Parisi-Zhang (KPZ) class is a paradigmatic example of universality in nonequilibrium phenomena, but clear experimental evidences of asymptotic 2D-KPZ statistics are still very rare, and far less understanding stems from its short-time behavior. We tackle such issues by analyzing surface fluctuations of CdTe films deposited on polymeric substrates, based on a huge spatio-temporal surface sampling acquired through atomic force microscopy. A textit{pseudo}-steady state (where average surface roughness and spatial correlations stay constant in time) is observed at initial times, persisting up to deposition of $sim 10^{4}$ monolayers. This state results from a fine balance between roughening and smoothening, as supported by a phenomenological growth model. KPZ statistics arises at long times, thoroughly verified by universal exponents, spatial covariance and several distributions. Recent theoretical generalizations of the Family-Vicsek scaling and the emergence of log-normal distributions during interface growth are experimentally confirmed. These results confirm that high vacuum vapor deposition of CdTe constitutes a genuine 2D-KPZ system, and expand our knowledge about possible substrate-induced short-time behaviors.
We derive the generalized Fokker-Planck equation associated with a Langevin equation driven by arbitrary additive white noise. We apply our result to study the distribution of symmetric and asymmetric L{e}vy flights in an infinitely deep potential we
Irreversible aggregation is an archetypal example of a system driven far from equilibrium by sources and sinks of a conserved quantity (mass). The source is a steady input of monomers and the evaporation of colliding particles with a small probabilit
We report extensive numerical simulations of growth models belonging to the nonlinear molecular beam epitaxy (nMBE) class, on flat (fixed-size) and expanding substrates (ES). In both $d=1+1$ and $2+1$, we find that growth regime height distributions
We report the results of our numerical simulation of classical-dissipative dynamics of a charged particle subjected to a non-markovian stochastic forcing. We find that the system develops a steady-state orbital magnetic moment in the presence of a st
We study the steady state of the abelian sandpile models with stochastic toppling rules. The particle addition operators commute with each other, but in general these operators need not be diagonalizable. We use their abelian algebra to determine the