ﻻ يوجد ملخص باللغة العربية
We report on observation of pronounced terahertz radiation-induced magneto-resistivity oscillations in AlGaAs/GaAs two-dimensional electron systems, the THz analog of the microwave induced resistivity oscillations (MIRO). Applying high power radiation of a pulsed molecular laser we demonstrate that MIRO, so far observed at low power only, are not destroyed even at very high intensities. Experiments with radiation intensity ranging over five orders of magnitude from $0.1$ W/cm$^2$ to $10^4$ W/cm$^2$ reveal high-power saturation of the MIRO amplitude, which is well described by an empirical fit function $I/(1 + I/I_s)^beta$ with $beta sim 1$. The saturation intensity Is is of the order of tens of W/cm$^2$ and increases by six times by increasing the radiation frequency from $0.6$ to $1.1$ THz. The results are discussed in terms of microscopic mechanisms of MIRO and compared to nonlinear effects observed earlier at significantly lower excitation frequencies.
We report on the study of terahertz radiation induced MIRO-like oscillations of magneto-resistivity in GaAs heterostructures. Our experiments provide an answer on two most intriguing questions - effect of radiation helicity and the role of the edges
We report on the observation of terahertz radiation induced photoconductivity and of terahertz analog of the microwave-induced resistance oscillations (MIRO) in HgTe-based quantum well (QW) structures of different width. The MIRO-like effect has been
We develop a systematic theory of microwave-induced oscillations in magnetoresistivity of a 2D electron gas in the vicinity of fractional harmonics of the cyclotron resonance, observed in recent experiments. We show that in the limit of well-separate
We report the observation of inverse-magnetic-field-periodic, radiation-induced magnetoresistance oscillations in GaAs/AlGaAs heterostructures prepared in W. Wegscheiders group, compare their characteristics with similar oscillations in V. Umanskys m
Based on a structure consisting of a single graphene layer situated on a periodic dielectric grating, we show theoretically that intense terahertz (THz) radiations can be generated by an electron bunch moving atop the graphene layer. The underlying p