ﻻ يوجد ملخص باللغة العربية
We present a non-perturbative solution of the Schrodinger equation $ipsi_t(t,x)=-psi_{xx}(t,x)-2(1 +alpha sinomega t) delta(x)psi(t,x)$, written in units in which $hbar=2m=1$, describing the ionization of a model atom by a parametric oscillating potential. This model has been studied extensively by many authors, including us. It has surprisingly many features in common with those observed in the ionization of real atoms and emission by solids, subjected to microwave or laser radiation. Here we use new mathematical methods to go beyond previous investigations and to provide a complete and rigorous analysis of this system. We obtain the Borel-resummed transseries (multi-instanton expansion) valid for all values of $alpha,omega,t$ for the wave function, ionization probability, and energy distribution of the emitted electrons, the latter not studied previously for this model. We show that for large $t$ and small $alpha$ the energy distribution has sharp peaks at energies which are multiples of $omega$, corresponding to photon capture. We obtain small $alpha$ expansions that converge for all $t$, unlike those of standard perturbation theory. We expect that our analysis will serve as a basis for treating more realistic systems revealing a form of universality in different emission processes.
We solve the time-dependent Schrodinger equation describing the emission of electrons from a metal surface by an external electric field $E$, turned on at $t=0$. Starting with a wave function $psi(x,0)$, representing a generalized eigenfunction when
We obtain time dependent $q$-Gaussian wave-packet solutions to a non linear Schrodinger equation recently advanced by Nobre, Rego-Montero and Tsallis (NRT) [Phys. Rev. Lett. 106 (2011) 10601]. The NRT non-linear equation admits plane wave-like soluti
The main motivation of this article is to derive sufficient conditions for dynamical stability of periodically driven quantum systems described by a Hamiltonian H(t), i.e., conditions under which it holds sup_{t in R} | (psi(t),H(t) psi(t)) |<infty w
An integrable anisotropic Heisenberg spin chain with nearest-neighbour couplings, next-nearest-neighbour couplings and scalar chirality terms is constructed. After proving the integrability, we obtain the exact solution of the system. The ground stat
We reconsider the Gram-Hadamard bound as it is used in constructive quantum field theory and many body physics to prove convergence of Fermionic perturbative expansions. Our approach uses a recursion for the amplitudes of the expansion, discovered or