ترغب بنشر مسار تعليمي؟ اضغط هنا

Pulsed Accretion in the T Tauri Binary TWA 3A

73   0   0.0 ( 0 )
 نشر من قبل Benjamin Tofflemire
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3As time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (~20 observations per orbit) for ~15 orbital periods. From U-band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ~4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3As average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.

قيم البحث

اقرأ أيضاً

We present time-series, high-resolution optical spectroscopy of the eccentric T Tauri binary TWA 3A. Our analysis focuses on variability in the strength and structure of the accretion tracing emission lines H alpha and He I 5876A. We find emission li ne strengths to display the same orbital-phase dependent behavior found with time-series photometry, namely, bursts of accretion near periastron passages. Such bursts are in good agreement with numerical simulations of young eccentric binaries. During accretion bursts, the emission of He I 5876A consistently traces the velocity of the primary star. After removing a model for the systems chromospheric emission, we find the primary star typically emits ~70% of the He I accretion flux. We interpret this result as evidence for circumbinary accretion streams that preferentially feed the TWA 3A primary. This finding is in contrast to most numerical simulations, which predict the secondary should be the dominant accretor in a binary system. Our results may be consistent with a model in which the precession of an eccentric circumbinary disk gap alternates between preferentially supplying mass to the primary and secondary.
We present an analysis of spectropolarimetric observations of the low-mass weak-line T Tauri stars TWA 25 and TWA 7. The large-scale surface magnetic fields have been reconstructed for both stars using the technique of Zeeman Doppler imaging. Our sur face maps reveal predominantly toroidal and non-axisymmetric fields for both stars. These maps reinforce the wide range of surface magnetic fields that have been recovered, particularly in pre-main sequence stars that have stopped accreting from the (now depleted) central regions of their discs. We reconstruct the large scale surface brightness distributions for both stars, and use these reconstructions to filter out the activity-induced radial velocity jitter, reducing the RMS of the radial velocity variations from 495 m/s to 32 m/s for TWA 25, and from 127 m/s to 36 m/s for TWA 7, ruling out the presence of close-in giant planets for both stars. The TWA 7 radial velocities provide an example of a case where the activity-induced radial velocity variations mimic a Keplerian signal that is uncorrelated with the spectral activity indices. This shows the usefulness of longitudinal magnetic field measurements in identifying activity-induced radial velocity variations.
We present a spectropolarimetric study of two weak-line T Tauri stars (wTTSs), TWA 6 and TWA 8A, as part of the MaTYSSE (Magnetic Topologies of Young Stars and the Survival of close-in giant Exoplanets) program. Both stars display significant Zeeman signatures that we have modelled using Zeeman Doppler Imaging (ZDI). The magnetic field of TWA 6 is split equally between poloidal and toroidal components, with the largest fraction of energy in higher-order modes, with a total unsigned flux of 840 G, and a poloidal component tilted $35^{circ}$ from the rotation axis. TWA 8A has a 70 per cent poloidal field, with most of the energy in higher-order modes, with an unsigned flux of 1.4 kG (with a magnetic filling factor of 0.2), and a poloidal field tilted $20^{circ}$ from the rotation axis. Spectral fitting of the very strong field in tb (in individual lines, simultaneously for Stokes $I$ and $V$) yielded a mean magnetic field strength of $6.0pm0.5$ kG. The higher field strengths recovered from spectral fitting suggests that a significant proportion of magnetic energy lies in small-scale fields that are unresolved by ZDI. So far, wTTSs in MaTYSSE appear to show that the poloidal-field axisymmetry correlates with the magnetic field strength. Moreover, it appears that classical T Tauri stars (cTTSs) and wTTSs are mostly poloidal and axisymmetric when mostly convective and cooler than $sim4300$ K, with hotter stars being less axisymmetric and poloidal, regardless of internal structure.
We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes within the close binary system V4046 Sgr, hosting two partly-convective classical T Tauri stars of masses ~0.9 Msun and age ~12 Myr. In th is paper, we present time-resolved spectropolarimetric observations collected in 2009 September with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) and covering a full span of 7d or ~2.5 orbital/rotational cycles of V4046 Sgr. Small circularly polarised Zeeman signatures are detected in the photospheric absorption lines but not in the accretion-powered emission lines of V4046 Sgr, thereby demonstrating that both system components host large-scale magnetic fields weaker and more complex than those of younger, fully-convective cTTSs of only a few Myr and similar masses. Applying our tomographic imaging tools to the collected data set, we reconstruct maps of the large-scale magnetic field, photospheric brightness and accretion-powered emission at the surfaces of both stars of V4046 Sgr. We find that these fields include significant toroidal components, and that their poloidal components are mostly non-axisymmetric with a dipolar component of 50-100G strongly tilted with respect to the rotation axis; given the similarity with fields of partly-convective main-sequence stars of similar masses and rotation periods, we conclude that these fields are most likely generated by dynamo processes. We also find that both stars in the system show cool spots close to the pole and extended regions of low-contrast, accretion-powered emission; it suggests that mass accretion is likely distributed rather than confined in well defined high-contrast accretion spots, in agreement with the derived magnetic field complexity.
Context. Classical T Tauri stars (cTTs) are pre-main sequence stars surrounded by an accretion disk. They host a strong magnetic field, and both magnetospheric accretion and ejection processes develop as the young magnetic star interacts with its dis k. Studying this interaction is a major goal toward understanding the properties of young stars and their evolution. Aims. The goal of this study is to investigate the accretion process in the young stellar system HQ Tau, an intermediate-mass T Tauri star (1.9 M$_{odot}$). Methods. The time variability of the system is investigated both photometrically, using Kepler-K2 and complementary light curves, and from a high-resolution spectropolarimetric time series obtained with ESPaDOnS at CFHT. Results. The quasi-sinusoidal Kepler-K2 light curve exhibits a period of 2.424 d, which we ascribe to the rotational period of the star. The radial velocity of the system shows the same periodicity, as expected from the modulation of the photospheric line profiles by surface spots. A similar period is found in the red wing of several emission lines (e.g., HI, CaII, NaI), due to the appearance of inverse P Cygni components, indicative of accretion funnel flows. Signatures of outflows are also seen in the line profiles, some being periodic, others transient. The polarimetric analysis indicates a complex, moderately strong magnetic field which is possibly sufficient to truncate the inner disk close to the corotation radius, r$_{cor}$ $sim$3.5 R$_{star}$. Additionally, we report HQ Tau to be a spectroscopic binary candidate whose orbit remains to be determined. Conclusions. The results of this study expand upon those previously reported for low-mass T Tauri stars, as they indicate that the magnetospheric accretion process may still operate in intermediate-mass pre-main sequence stars, such as HQ Tau.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا