ترغب بنشر مسار تعليمي؟ اضغط هنا

e-ASTROGAM mission: a major step forward for gamma-ray polarimetry

96   0   0.0 ( 0 )
 نشر من قبل Vincent Tatischeff
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

e-ASTROGAM is a gamma-ray space mission proposed for the fifth Medium-size mission (M5) of the European Space Agency. It is dedicated to the study of the non-thermal Universe in the photon energy range from ~0.15 MeV to 3 GeV with unprecedented sensitivity, angular and energy resolution, together with a groundbreaking capability for gamma-ray polarimetric measurements over its entire bandwidth. We discuss here the main polarization results expected at low energies, between 150 keV and 5 MeV, using Compton interactions in the e-ASTROGAM instrument, from observations of active galactic nuclei, gamma-ray bursts, microquasars, and the Crab pulsar and nebula. The anticipated performance of the proposed observatory for polarimetry is illustrated by simulations of the polarization signals expected from various sources. We show that polarimetric analyses with e-ASTROGAM should provide definitive insight into the geometry, magnetization and content of the high-energy plasmas found in the emitting sources, as well as on the processes of radiation of these plasmas.

قيم البحث

اقرأ أيضاً

e-ASTROGAM is a gamma-ray observatory operating in a broad energy range, 0.15 MeV - 3 GeV, recently proposed as the M5 Medium-size mission of the European Space Agency. It has the potential to revolutionize the astronomy of medium-energy gamma-rays b y increasing the number of known sources in this domain by more than an order of magnitude and providing gamma-ray polarization information for many of these sources. In these proceedings, we discuss the expected capacity of the mission to study the physics of supernovae, both thermonuclear and core-collapse, as well as the origin of cosmic rays in supernova shocks.
The e-ASTROGAM is a gamma-ray space mission to be proposed as the M5 Medium-size mission of the European Space Agency. It is dedicated to the observation of the Universe with unprecedented sensitivity in the energy range 0.2 - 100 MeV, extending up t o GeV energies, together with a groundbreaking polarization capability. It is designed to substantially improve the COMPTEL and Fermi sensitivities in the MeV-GeV energy range and to open new windows of opportunity for astrophysical and fundamental physics space research. e-ASTROGAM will operate as an open astronomical observatory, with a core science focused on (1) the activity from extreme particle accelerators, including gamma-ray bursts and active galactic nuclei and the link of jet astrophysics to the new astronomy of gravitational waves, neutrinos, ultra-high energy cosmic rays, (2) the high-energy mysteries of the Galactic center and inner Galaxy, including the activity of the supermassive black hole, the Fermi Bubbles, the origin of the Galactic positrons, and the search for dark matter signatures in a new energy window; (3) nucleosynthesis and chemical evolution, including the life cycle of elements produced by supernovae in the Milky Way and the Local Group of galaxies. e-ASTROGAM will be ideal for the study of high-energy sources in general, including pulsars and pulsar wind nebulae, accreting neutron stars and black holes, novae, supernova remnants, and magnetars. And it will also provide important contributions to solar and terrestrial physics. The e-ASTROGAM telescope is optimized for the simultaneous detection of Compton and pair-producing gamma-ray events over a large spectral band. It is based on a very high technology readiness level for all subsystems and includes many innovative features for the detectors and associated electronics.
e-ASTROGAM (enhanced ASTROGAM) is a breakthrough Observatory space mission, with a detector composed by a Silicon tracker, a calorimeter, and an anticoincidence system, dedicated to the study of the non-thermal Universe in the photon energy range fro m 0.3 MeV to 3 GeV - the lower energy limit can be pushed to energies as low as 150 keV for the tracker, and to 30 keV for calorimetric detection. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LIGO-Virgo-GEO600-KAGRA, SKA, ALMA, E-ELT, TMT, LSST, JWST, Athena, CTA, IceCube, KM3NeT, and LISA.
e-ASTROGAM is a concept for a breakthrough observatory space mission carrying a gamma-ray telescope dedicated to the study of the non-thermal Universe in the photon energy range from 0.15 MeV to 3 GeV. The lower energy limit can be pushed down to ene rgies as low as 30 keV for gamma-ray burst detection with the calorimeter. The mission is based on an advanced space-proven detector technology, with unprecedented sensitivity, angular and energy resolution, combined with remarkable polarimetric capability. Thanks to its performance in the MeV-GeV domain, substantially improving its predecessors, e-ASTROGAM will open a new window on the non-thermal Universe, making pioneering observations of the most powerful Galactic and extragalactic sources, elucidating the nature of their relativistic outflows and their effects on the surroundings. With a line sensitivity in the MeV energy range one to two orders of magnitude better than previous and current generation instruments, e-ASTROGAM will determine the origin of key isotopes fundamental for the understanding of supernova explosion and the chemical evolution of our Galaxy. The mission will be a major player of the multiwavelength, multimessenger time-domain astronomy of the 2030s, and provide unique data of significant interest to a broad astronomical community, complementary to powerful observatories such as LISA, LIGO, Virgo, KAGRA, the Einstein Telescope and the Cosmic Explorer, IceCube-Gen2 and KM3NeT, SKA, ALMA, JWST, E-ELT, LSST, Athena, and the Cherenkov Telescope Array.
In this document, we describe the scientific potential of blazar observations with a X-ray polarimetry mission like GEMS (Gravity and Extreme Magnetism SMEX). We describe five blazar science investigations that such a mission would enable: (i) the st ructure and the role of magnetic fields in AGN jets, (ii) analysis of the polarization of the synchrotron X-ray emission from AGN jets, (iii) discrimination between synchrotron self-Compton and external Compton models for blazars with inverse Compton emission in the X-ray band, (iv) a precision study of the polarization properties of the X-ray emission from Cen-A, (v) tests of Lorentz Invariance based on X-ray polarimetric observations of blazars. We conclude with a discussion of a straw man observation program and recommended accompanying multiwavelength observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا