ترغب بنشر مسار تعليمي؟ اضغط هنا

Project VeSElkA: Abundance analysis of chemical species in HD41076 and HD148330

92   0   0.0 ( 0 )
 نشر من قبل Viktor Khalack R
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new semi-automatic approach is employed to carry out the abundance analysis of high-resolution spectra of HD41076 and HD148330 obtained recently with the spectropolarimetre ESPaDOnS at the CFHT. This approach allows to prepare in a semi-automatic mode the input data for the modified ZEEMAN2 code and to analyse several hundreds of line profiles in sequence during a single run. It also provides more information on abundance distribution for each chemical element at the deeper atmospheric layers. Our analysis of the Balmer profiles observed in the spectra of HD41076 and HD148330 has resulted in the estimates of their effective temperature, gravity, metallicity and radial velocity. The respective models of stellar atmosphere have been calculated with the code PHOENIX and used to carry out abundance analysis employing the modified ZEEMAN2 code. The analysis shows a deficit of the C, N, F, Mg, Ca, Ti, V, Cu, Y, Mo, Sm and Gd, and overabundance of Cr, Mn, Fe, Co, Ni, Sr, Zr, Ba, Ce, Nd and Dy in the stellar atmosphere of HD41076. In the atmosphere of HD148330, the C, N and Mo appear to be underabundant, while the Ne, Na, Al, Si, P, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Zn, Sr, Y, Zr, Ba, Ce, Pr, Nd, Sm, Eu, Gd and Dy are overabundant. We also have found signatures of vertical abundance stratification of Fe, Ti, Cr and Mn in HD41076, and of Fe, Ti, V, Cr, Mn, Y, Zr, Ce, Nd, Sm and Gd in HD148330.

قيم البحث

اقرأ أيضاً

A new research project on spectral analysis that aims to characterize the vertical stratification of element abundances in stellar atmospheres of chemically peculiar (CP) stars is discussed in detail. Some results on detection of vertical abundance s tratification in several slowly rotating main sequence CP stars are presented and considered as an indicator of the effectiveness of the atomic diffusion mechanism responsible for the observed peculiarities of chemical abundances. This study is carried out in the frame of Project VeSElkA (Vertical Stratification of Elements Abundance) for which 34 slowly rotating CP stars have been observed with the ESPaDOnS spectropolarimeter at CFHT.
We aim at deriving accurate atmospheric parameters and chemical abundances of 19 barium (Ba) stars, including both strong and mild Ba stars, based on the high signal-to-noise ratio and high resolution Echelle spectra obtained from the 2.16 m telescop e at Xinglong station of National Astronomical Observatories, Chinese Academy of Sciences. The chemical abundances of the sample stars were obtained from an LTE, plane-parallel and line-blanketed atmospheric model by inputting the atmospheric parameters (effective temperatures, surface gravities, metallicity and microturbulent velocity) and equivalent widths of stellar absorption lines. These samples of Ba stars are giants indicated by atmospheric parameters, metallicities and kinematic analysis about UVW velocity. Chemical abundances of 17 elements were obtained for these Ba stars. Their light elements (O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn and Ni) are similar to the solar abundances. Our samples of Ba stars show obvious overabundances of neutron-capture (n-capture) process elements relative to the Sun. Their median abundances of [Ba/Fe], [La/Fe] and [Eu/Fe] are 0.54, 0.65 and 0.40, respectively. The YI and ZrI abundances are lower than Ba, La and Eu, but higher than the light elements for the strong Ba stars and similar to the iron-peak elements for the mild stars. There exists a positive correlation between Ba intensity and [Ba/Fe]. For the n-capture elements (Y, Zr, Ba, La), there is an anti-correlation between their [X/Fe] and [Fe/H]. We identify nine of our sample stars as strong Ba stars with [Ba/Fe]>0.6 where seven of them have Ba intensity Ba=2-5, one has Ba=1.5 and another one has Ba=1.0. The remaining ten stars are classified as mild Ba stars with 0.17<[Ba/Fe]<0.54.
The study of symbiotic systems is of considerable importance in our understanding of binary system stellar evolution in systems where mass loss or transfer takes place. Elemental abundances are of special significance since they can be used to track mass exchange. However, there are few symbiotic giants for which the abundances are fairly well determined. Here we present for the first time a detailed analysis of the chemical composition for the giants in the RW Hya and SY Mus systems. The analysis is based on high resolution (R 50000), high S/N, near-IR spectra. Spectrum synthesis employing standard LTE analysis and atmosphere models was used to obtain photospheric abundances of CNO and elements around the iron peak (Sc, Ti, Fe, and Ni). Our analysis reveals a significantly sub-solar metallicity, [Fe/H]-0.75}, for the RW Hya giant confirming its membership in the Galactic halo population and a near-solar metallicity for the SY Mus giant. The very low 12C/13C isotopic ratios, 6-10, derived for both objects indicate that the giants have experienced the first dredge-up
Symbiotic stars are the long period, binary systems of strongly interacting stars at the final stages of evolution which can be useful tool to understand the chemical evolution of the Galaxy and the formation of stellar populations. Knowledge of the chemical composition of the symbiotic giants is essential to advancing our understanding of these issues but unfortunately reliably determinations exist only in a few cases. We perform a program for detailed chemical composition analysis in over 30 symbiotic giants, based on the high resolution, near-IR spectra, obtained with Phoenix/Gemini South spectrometer. The methods of the standard LTE analysis is used to obtain photospheric abundances of CNO and elements around iron peak. Here we present results obtained for four objects: RW Hya, SY Mus, BX Mon, and AE Ara. Our analysis revealed a significantly sub-solar metallicity (Me/H ~ -0.75) for RW Hya, a slightly sub-solar metallicities (Me/H ~ 0.2-0.3) in BX Mon and AE Ara, and a near-solar metallicity in SY Mus. 12C/13C isotopic ratios are low in all cases, ranging from ~6 to ~10, and indicate that the giants have experienced the first dredge-up.
Knowledge of the elemental abundances of symbiotic giants is essential to address the role of chemical composition in the evolution of symbiotic binaries, to map their parent population, and to trace their mass transfer history. However, there are fe w symbiotic giants for which the photospheric abundances are fairly well determined. This is the second in a series of papers on chemical composition of symbiotic giants determined from high-resolution (R ~ 50000) near-IR spectra. Results are presented for the late-type giant star in the AE Ara, BX Mon, KX TrA, and CL Sco systems. Spectrum synthesis employing standard local thermal equilibrium (LTE) analysis and stellar atmosphere models were used to obtain photospheric abundances of CNO and elements around the iron peak (Sc, Ti, Fe, and Ni). Our analysis resulted in sub-solar metallicities in BX Mon, KX TrA, and CL Sco by [Fe/H] ~ -0.3 or -0.5 depending on the value of microturbulence. AE Ara shows metallicity closer to solar by ~0.2 dex. The enrichment in 14N isotope found in all these objects indicates that the giants have experienced the first dredge-up. In the case of BX Mon first dredge-up is also confirmed by the low 12C/13C isotopic ratio of ~8.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا