ﻻ يوجد ملخص باللغة العربية
In the class of streaming anomaly detection algorithms for univariate time series, the size of the sliding window over which various statistics are calculated is an important parameter. To address the anomalous variation in the scale of the pseudo-periodicity of time series, we define a streaming multi-scale anomaly score with a streaming PCA over a multi-scale lag-matrix. We define three methods of aggregation of the multi-scale anomaly scores. We evaluate their performance on Yahoo! and Numenta dataset for unsupervised anomaly detection benchmark. To the best of authors knowledge, this is the first time a multi-scale streaming anomaly detection has been proposed and systematically studied.
Nowadays, multi-sensor technologies are applied in many fields, e.g., Health Care (HC), Human Activity Recognition (HAR), and Industrial Control System (ICS). These sensors can generate a substantial amount of multivariate time-series data. Unsupervi
The unsupervised detection of anomalies in time series data has important applications in user behavioral modeling, fraud detection, and cybersecurity. Anomaly detection has, in fact, been extensively studied in categorical sequences. However, we oft
On-line detection of anomalies in time series is a key technique used in various event-sensitive scenarios such as robotic system monitoring, smart sensor networks and data center security. However, the increasing diversity of data sources and the va
We propose a Bayesian nonparametric approach to modelling and predicting a class of functional time series with application to energy markets, based on fully observed, noise-free functional data. Traders in such contexts conceive profitable strategie
In this paper, we study the problems of principal Generalized Eigenvector computation and Canonical Correlation Analysis in the stochastic setting. We propose a simple and efficient algorithm, Gen-Oja, for these problems. We prove the global converge