ترغب بنشر مسار تعليمي؟ اضغط هنا

Turing Completeness of Finite, Epistemic Programs

107   0   0.0 ( 0 )
 نشر من قبل Rasmus Kr{\\ae}mmer Rendsvig
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this note, we show the class of finite, epistemic programs to be Turing complete. Epistemic programs is a widely used update mechanism used in epistemic logic, where it such are a special type of action models: One which does not contain postconditions.



قيم البحث

اقرأ أيضاً

We address the safety verification and synthesis problems for real-time systems. We introduce real-time programs that are made of instructions that can perform assignments to discrete and real-valued variables. They are general enough to capture inte resting classes of timed systems such as timed automata, stopwatch automata, time(d) Petri nets and hybrid automata. We propose a semi-algorithm using refinement of trace abstractions to solve both the reachability verification problem and the parameter synthesis problem for real-time programs. All of the algorithms proposed have been implemented and we have conducted a series of experiments, comparing the performance of our new approach to state-of-the-art tools in classical reachability, robustness analysis and parameter synthesis for timed systems. We show that our new method provides solutions to problems which are unsolvable by the current state-of-the-art tools.
A register automaton is a finite automaton with finitely many registers ranging from an infinite alphabet. Since the valuations of registers are infinite, there are infinitely many configurations. We describe a technique to classify infinite register automata configurations into finitely many exact representative configurations. Using the finitary representation, we give an algorithm solving the reachability problem for register automata. We moreover define a computation tree logic for register automata and solve its model checking problem.
Scenarios, or Message Sequence Charts, offer an intuitive way of describing the desired behaviors of a distributed protocol. In this paper we propose a new way of specifying finite-state protocols using scenarios: we show that it is possible to autom atically derive a distributed implementation from a set of scenarios augmented with a set of safety and liveness requirements, provided the given scenarios adequately emph{cover} all the states of the desired implementation. We first derive incomplete state machines from the given scenarios, and then synthesis corresponds to completing the transition relation of individual processes so that the global product meets the specified requirements. This completion problem, in general, has the same complexity, PSPACE, as the verification problem, but unlike the verification problem, is NP-complete for a constant number of processes. We present two algorithms for solving the completion problem, one based on a heuristic search in the space of possible completions and one based on OBDD-based symbolic fixpoint computation. We evaluate the proposed methodology for protocol specification and the effectiveness of the synthesis algorithms using the classical alternating-bit protocol.
Coalition logic is one of the most popular logics for multi-agent systems. While epistemic extensions of coalition logic have received much attention, existence of their complete axiomatisations has so far been an open problem. In this paper we settl e several of those problems. We prove completeness for epistemic coalition logic with common knowledge, with distributed knowledge, and with both common and distributed knowledge, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا