ﻻ يوجد ملخص باللغة العربية
In this paper we present visible range light curves of the irregular Uranian satellites Sycorax, Caliban, Prospero, Ferdinand and Setebos taken with Kepler Space Telescope in the course of the K2 mission. Thermal emission measurements obtained with the Herschel/PACS and Spitzer/MIPS instruments of Sycorax and Caliban were also analysed and used to determine size, albedo and surface characteristics of these bodies. We compare these properties with the rotational and surface characteristics of irregular satellites in other giant planet systems and also with those of main belt and Trojan asteroids and trans-Neptunian objects. Our results indicate that the Uranian irregular satellite system likely went through a more intense collisional evolution than the irregular satellites of Jupiter and Saturn. Surface characteristics of Uranian irregular satellites seems to resemble the Centaurs and trans-Neptunian objects more than irregular satellites around other giant planets, suggesting the existence of a compositional discontinuity in the young Solar system inside the orbit of Uranus.
In this paper we present an analysis of Kepler K2 mission Campaign 3 observations of the irregular Neptune satellite, Nereid. We determined a rotation period of P=11.594(+/-)0.017 h and amplitude of dm=0.0328(+/-)00018, confirming previous short rota
Herschel-PACS measurements of the rotational R(0) and R(1) HD lines in the atmospheres of Uranus and Neptune are analyzed in order to derive a D/H ratio with improved precision for both planets. The derivation of the D/H ratio includes also previous
The large and tidally-locked classical moons of Uranus display longitudinal and planetocentric trends in their surface compositions. Spectrally red material has been detected primarily on the leading hemispheres of the outer moons, Titania and Oberon
We have used the {it Spitzer Space Telescope} to observe two transiting planetary systems orbiting low mass stars discovered in the Kepler Ktwo mission. The system K2-3 (EPIC 201367065) hosts three planets while EPIC 202083828 (K2-26) hosts a single
NASAs Spitzer Infrared Spectrometer (IRS) acquired mid-infrared (5-37 microns) disc-averaged spectra of Uranus very near to its equinox in December 2007. A mean spectrum was constructed from observations of multiple central meridian longitudes, space