ﻻ يوجد ملخص باللغة العربية
We investigate magnetic properties of an $S$=1/2 quasi-one dimensional organic antiferromagnet, D-F$_{5}$PNN using magnetization measurements taken at temperatures as low as 0.5 K. Three distinct phases were observed consisting of uniform, dimerized (D), and incommensurate (I) spin structures in the magnetic field versus temperature plane, where a significant hysteresis appears between D-I transitions in the field scan measurements. A combination of magnon ($S$=1) and soliton ($S$=1/2) excitations have successfully reproduced the observed magnetic susceptibility. In addition, such excitations provide a reasonable interpretation of the temperature dependent electron spin resonance (ESR) spectra. By comparison with the theoretical study, we conclude that D-F$_{5}$PNN is an ideal compound for investigating the spin-Peierls transition.
Infrared reflectance of alpha-NaV2O5 single crystals in the frequency range from 50 cm-1 to 10000 cm-1 was studied for a, b and c-polarisations. In addition to phonon modes identification, for the a-polarised spectrum a broad continuum absorption in
Heat capacity and magnetic torque measurements are used to probe the anisotropic temperature-field phase diagram of the frustrated spin dimer compound Ba3Mn2O8 in the field range from 0T to 18T. For fields oriented along the c axis a single magnetica
At room-temperature NaV2O5 was found to have the centrosymmetric space group Pmmn. This space group implies the presence of only one kind of V site in contrast with previous reports of the non-centrosymmetric counterpart P21mn. This indicates a non-i
For broad nanoscale applications, it is crucial to implement more functional properties, especially those ferroic orders, into two-dimensional materials. Here GdI$_3$ is theoretically identified as a honeycomb antiferromagnet with large $4f$ magnetic
Motivated by the recent synthesis of two insulating Li$_2$IrO$_3$ polymorphs, where Ir$^{4+}$ $S_{eff}$=1/2 moments form 3D (harmonic) honeycomb structures with threefold coordination, we study magnetic Hamiltonians on the resulting $beta$-Li$_2$IrO$