ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-nucleon emission in neutrino and electron scattering from nuclei: the modified convolution approximation

54   0   0.0 ( 0 )
 نشر من قبل Jose Amaro E
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The theoretical formalism of inclusive lepton-nucleus scattering in the two-nucleon emission channel is discussed in the context of a simplified approach, the modified convolution approximation. This allows one to write the 2p2h responses of the relativistic Fermi gas as a folding integral of two 1p1h responses with the energies and momenta transferred to each nucleon. The idea behind this method is to introduce different average momenta for the two initial nucleons in the matrix elements of the two-body current, with the innovation that they depend on the transferred energies and momenta. This method treats exactly the two-body phase space kinematics, and reduces the formulae of the response functions from seven-dimensional integrals over momenta to much simpler three-dimensional ones. The applicability of the method is checked by comparing with the full results within a model of electroweak meson-exchange currents. The predictions are accurate enough, especially in the low-energy threshold region where the average momentum approximation works the best.



قيم البحث

اقرأ أيضاً

A semi-empirical formula for the electroweak response functions in the two-nucleon emission channel is proposed. The method consists in expanding each one of the vector-vector, axial-axial and vector-axial responses as sums of six sub-responses. Thes e corresponds to separating the meson-exchange currents as the sum of three currents of similar structure, and expanding the hadronic tensor, as the sum of the separate contributions from each current plus the interferences between them. For each sub-response we factorize the coupling constants, the electroweak form factors, the phase space and the delta propagator, for the delta forward current. The remaining spin-isospin contributions are encoded in coefficients for each value of the momentum transfer, $q$. The coefficients are fitted to the exact results in the relativistic mean field model of nuclear matter, for each value of $q$. The dependence on the energy transfer, $omega$ is well described by the semi-empirical formula. The $q$-dependency of the coefficients of the sub-responses can be parameterized or can be interpolated from the provided tables. The description of the five theoretical responses is quite good. The parameters of the formula, the Fermi momentum, number of particles relativistic effective mass, vector energy the electroweak form factors and the coupling constants, can be modified easily. This semi-empirical formula can be applied to the cross-section of neutrinos, antineutrinos and electrons.
Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and rela tivistic effects before including a realistic meson-exchange current (MEC) operator. This allows one to study the mathematical properties of the non-trivial seven-dimensional integrals appearing in the calculation and to design an optimal numerical procedure to reduce the computation time. This is required for practical applications to CC neutrino scattering experiments, where an additional integral over the neutrino flux is performed. Finally we examine the viability of this model to compute the electroweak 2p-2h response functions.
We compare the predictions of the SuperScaling model for charged current quasielastic muonic neutrino and antineutrino scattering from $^{12}$C with experimental data spanning an energy range up to 100 GeV. We discuss the sensitivity of the results t o different parametrizations of the nucleon vector and axial-vector form factors. Finally, we show the differences between electron and muon (anti-)neutrino cross sections relevant for the $ u$STORM facility.
86 - Maria B. Barbaro 2006
The superscaling properties of electron scattering data are used to extract model-independent predictions for neutrino-nucleus cross sections.
We calculate the cross section of the electron scattering from a bound nucleon within light-front approximation. The advantage of this approximation is the possibility of systematic account for the off-shell effects which become essential in high ene rgy electro-nuclear processes aimed at probing the nuclear structure at small distances. We derive a new dynamical parameter which allows to control the extent of the off-shellness of electron - bound-nucleon electromagnetic current for different regions of momentum transfer and initial light-cone momenta of the bound nucleon. The derived cross section is compared with the results of other approaches in treating the off-shell effects in electron-nucleon scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا