ترغب بنشر مسار تعليمي؟ اضغط هنا

Electrically tunable polarizer based on two-dimensional orthorhombic ferrovalley materials

145   0   0.0 ( 0 )
 نشر من قبل Chungang Duan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The concept of ferrovalley materials has been proposed very recently. The existence of spontaneous valley polarization, resulting from ferromagnetism, in such hexagonal two-dimensional materials makes nonvolatile valleytronic applications realizable. Here, we introduce a new member of ferrovalley family with orthorhombic lattice, i.e. monolayer group-IV monochalcogenides (GIVMs), in which the intrinsic valley polarization originates from ferroelectricity, instead of ferromagnetism. Combining the group theory analysis and first-principles calculations, we demonstrate that, different from the valley-selective circular dichroism in hexagonal lattice, linearly polarized optical selectivity for valleys exists in the new type of ferrovalley materials. On account of the distinctive property, a prototype of electrically tunable polarizer is realized. In the ferrovalley-based polarizer, a laser beam can be optionally polarized in x- or y-direction, depending on the ferrovalley state controlled by external electric fields. Such a device can be further optimized to emit circularly polarized radiation with specific chirality and to realize the tunability for operating wavelength. Therefore, we show that two-dimensional orthorhombic ferrovalley materials are the promising candidates to provide an advantageous platform to realize the polarizer driven by electric means, which is of great importance in extending the practical applications of valleytronics.



قيم البحث

اقرأ أيضاً

277 - Miao Wang , Songhua Cai , Chen Pan 2018
Van der Waals heterostructure based on layered two-dimensional (2D) materials offers unprecedented opportunities to create materials with atomic precision by design. By combining superior properties of each component, such heterostructure also provid es possible solutions to address various challenges of the electronic devices, especially those with vertical multilayered structures. Here, we report the realization of robust memristors for the first time based on van der Waals heterostructure of fully layered 2D materials (graphene/MoS2-xOx/graphene) and demonstrate a good thermal stability lacking in traditional memristors. Such devices have shown excellent switching performance with endurance up to 107 and a record-high operating temperature up to 340oC. By combining in situ high-resolution TEM and STEM studies, we have shown that the MoS2-xOx switching layer, together with the graphene electrodes and their atomically sharp interfaces, are responsible for the observed thermal stability at elevated temperatures. A well-defined conduction channel and a switching mechanism based on the migration of oxygen ions were also revealed. In addition, the fully layered 2D materials offer a good mechanical flexibility for flexible electronic applications, manifested by our experimental demonstration of a good endurance against over 1000 bending cycles. Our results showcase a general and encouraging pathway toward engineering desired device properties by using 2D van der Waals heterostructures.
Low-dimensional materials differ from their bulk counterpart in many respects. In particular, the screening of the Coulomb interaction is strongly reduced, which can have important consequences such as the significant increase of exciton binding ener gies. In bulk materials the binding energy is used as an indicator in optical spectra to distinguish different kinds of excitons, but this is not possible in low-dimensional materials, where the binding energy is large and comparable in size for excitons of very different localization. Here we demonstrate that the exciton band structure, which can be accessed experimentally, instead provides a powerful way to identify the exciton character. By comparing the ab initio solution of the many-body Bethe-Salpeter equation for graphane and single-layer hexagonal BN, we draw a general picture of the exciton dispersion in two-dimensional materials, highlighting the different role played by the exchange electron-hole interaction and by the electronic band structure. Our interpretation is substantiated by a prediction for phosphorene.
142 - Jie Li , Ruqian Wu 2021
Searching for novel two-dimensional (2D) materials is crucial for the development of the next generation technologies such as electronics, optoelectronics, electrochemistry and biomedicine. In this work, we designed a series of 2D materials based on endohedral fullerenes, and revealed that many of them integrate different functions in a single system, such as ferroelectricity with large electric dipole moments, multiple magnetic phases with both strong magnetic anisotropy and high Curie temperature, quantum spin Hall effect or quantum anomalous Hall effect with robust topologically protected edge states. We further proposed a new style topological field-effect transistor. These findings provide a strategy of using fullerenes as building blocks for the synthesis of novel 2D materials which can be easily controlled with a local electric field.
78 - Chunhao Guo , Junqing Xu , 2021
Substrates have strong effects on optoelectronic properties of two-dimensional (2D) materials, which have emerged as promising platforms for exotic physical phenomena and outstanding applications. To reliably interpret experimental results and predic t such effects at 2D interfaces, theoretical methods accurately describing electron correlation and electron-hole interaction such as first-principles many-body perturbation theory are necessary. In our previous work [Phys. Rev. B 102, 205113(2020)], we developed the reciprocal-space linear interpolation method that can take into account the effects of substrate screening for arbitrarily lattice-mismatched interfaces at the GW level of approximation. In this work, we apply this method to examine the substrate effect on excitonic excitation and recombination of 2D materials by solving the Bethe-Salpeter equation. We predict the nonrigid shift of 1s and 2s excitonic peaks due to substrate screening, in excellent agreements with experiments. We then reveal its underlying physical mechanism through 2D hydrogen model and the linear relation between quasiparticle gaps and exciton binding energies when varying the substrate screening. At the end, we calculate the exciton radiative lifetime of monolayer hexagonal boron nitride with various substrates at zero and room temperature, as well as the one of WS2 where we obtain good agreement with experimental lifetime. Our work answers important questions of substrate effects on excitonic properties of 2D interfaces.
The discovery of graphene makes it highly desirable to seek new two-dimensional materials. Through first-principles investigation, we predict two-dimensional materials of ReN$_{2}$: honeycomb and tetragonal structures. The phonon spectra establish th e dynamical stability for both of the two structures, and the calculated in-plane stiffness constants proves their mechanical stability. The energy bands near the Fermi level consist of N-p and Re-d orbitals for the honeycomb structure, and are mainly from Re d orbitals for the tetragonal structure. While the tetragonal structure is non-magnetic, the honeycomb structure has N-based ferromagnetism, which will transit to anti-ferromagnetism under 14$%$ biaxial strain. The calculated electron localization function and spin density indicate that direct N-N bond can occur only in the honeycomb structure. The ferromagnetism allows us to distinguish the two 2D phases easily. The tetragonal phase has lower energy than the honeycomb one, which means that the tetragonal phase is more stable, but the hexagonal phase has much larger bulk, shear, and Youngs muduli than the tetragonal phase. The tetragonal phase is a three-bands metal, and the hexagonal phase is a ferromagnetic semi-metal. The special structural, electronic, magnetic, and optical properties in the honeycomb and tetragonal structures make them promising for novel applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا