ترغب بنشر مسار تعليمي؟ اضغط هنا

Spontaneous collective synchronization in the Kuramoto model with additional non-local interactions

65   0   0.0 ( 0 )
 نشر من قبل Shamik Gupta Dr.
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Shamik Gupta




اسأل ChatGPT حول البحث

In the context of the celebrated Kuramoto model of globally-coupled phase oscillators of distributed natural frequencies, which serves as a paradigm to investigate spontaneous collective synchronization in many-body interacting systems, we report on a very rich phase diagram in presence of thermal noise and an additional non-local interaction on a one-dimensional periodic lattice. Remarkably, the phase diagram involves both equilibrium and non-equilibrium phase transitions. In two contrasting limits of the dynamics, we obtain exact analytical results for the phase transitions. These two limits correspond to (i) the absence of thermal noise, when the dynamics reduces to that of a non-linear dynamical system, and (ii) the oscillators having the same natural frequency, when the dynamics becomes that of a statistical system in contact with a heat bath and relaxing to a statistical equilibrium state. In the former case, our exact analysis is based on the use of the so-called Ott-Antonsen ansatz to derive a reduced set of nonlinear partial differential equations for the macroscopic evolution of the system. Our results for the case of statistical equilibrium are on the other hand obtained by extending the well-known transfer matrix approach for nearest-neighbor Ising model to consider non-local interactions. The work offers a case study of exact analysis in many-body interacting systems. The results obtained underline the crucial role of additional non-local interactions in either destroying or enhancing the possibility of observing synchrony in mean-field systems exhibiting spontaneous synchronization.



قيم البحث

اقرأ أيضاً

We study the effects of Janus oscillators in a system of phase oscillators in which the coupling constants take both positive and negative values. Janus oscillators may also form a cluster when the other ones are ordered and we calculate numerically the traveling speed of three clusters emerging in the system and average separations between them as well as the order parameters for three groups of oscillators, as the coupling constants and the fractions of positive and Janus oscillators are varied. An expression explaining the dependence of the traveling speed on these parameters is obtained and observed to fit well the numerical data. With the help of this, we describe how Janus oscillators affect the traveling of the clusters in the system.
We consider the inertial Kuramoto model of $N$ globally coupled oscillators characterized by both their phase and angular velocity, in which there is a time delay in the interaction between the oscillators. Besides the academic interest, we show that the model can be related to a network of phase-locked loops widely used in electronic circuits for generating a stable frequency at multiples of an input frequency. We study the model for a generic choice of the natural frequency distribution of the oscillators, to elucidate how a synchronized phase bifurcates from an incoherent phase as the coupling constant between the oscillators is tuned. We show that in contrast to the case with no delay, here the system in the stationary state may exhibit either a subcritical or a supercritical bifurcation between a synchronized and an incoherent phase, which is dictated by the value of the delay present in the interaction and the precise value of inertia of the oscillators. Our theoretical analysis, performed in the limit $N to infty$, is based on an unstable manifold expansion in the vicinity of the bifurcation, which we apply to the kinetic equation satisfied by the single-oscillator distribution function. We check our results by performing direct numerical integration of the dynamics for large $N$, and highlight the subtleties arising from having a finite number of oscillators.
Globally coupled ensembles of phase oscillators serve as useful tools for modeling synchronization and collective behavior in a variety of applications. As interest in the effects of simplicial interactions (i.e., non-additive, higher-order interacti ons between three or more units) continues to grow we study an extension of the Kuramoto model where oscillators are coupled via three-way interactions that exhibits novel dynamical properties including clustering, multistability, and abrupt desynchronization transitions. Here we provide a rigorous description of the stability of various multicluster states by studying their spectral properties in the thermodynamic limit. Not unlike the classical Kuramoto model, a natural frequency distribution with infinite support yields a population of drifting oscillators, which in turn guarantees that a portion of the spectrum is located on the imaginary axes, resulting in neutrally stable or unstable solutions. On the other hand, a natural frequency distribution with finite support allows for a fully phase-locked state, whose spectrum is real and may be linearly stable or unstable.
Synchronization is an important behavior that characterizes many natural and human made systems composed by several interacting units. It can be found in a broad spectrum of applications, ranging from neuroscience to power-grids, to mention a few. Su ch systems synchronize because of the complex set of coupling they exhibit, the latter being modeled by complex networks. The dynamical behavior of the system and the topology of the underlying network are strongly intertwined, raising the question of the optimal architecture that makes synchronization robust. The Master Stability Function (MSF) has been proposed and extensively studied as a generic framework to tackle synchronization problems. Using this method, it has been shown that for a class of models, synchronization in strongly directed networks is robust to external perturbations. In this paper, our approach is to transform the non-autonomous system of coupled oscillators into an autonomous one, showing that previous results are model-independent. Recent findings indicate that many real-world networks are strongly directed, being potential candidates for optimal synchronization. Inspired by the fact that highly directed networks are also strongly non-normal, in this work, we address the matter of non-normality by pointing out that standard techniques, such as the MSF, may fail in predicting the stability of synchronized behavior. These results lead to a trade-off between non-normality and directedness that should be properly considered when designing an optimal network, enhancing the robustness of synchronization.
A scenario has recently been reported in which in order to stabilize complete synchronization of an oscillator network---a symmetric state---the symmetry of the system itself has to be broken by making the oscillators nonidentical. But how often does such behavior---which we term asymmetry-induced synchronization (AISync)---occur in oscillator networks? Here we present the first general scheme for constructing AISync systems and demonstrate that this behavior is the norm rather than the exception in a wide class of physical systems that can be seen as multilayer networks. Since a symmetric network in complete synchrony is the basic building block of cluster synchronization in more general networks, AISync should be common also in facilitating cluster synchronization by breaking the symmetry of the cluster subnetworks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا