ترغب بنشر مسار تعليمي؟ اضغط هنا

Seeing double with K2: Testing re-inflation with two remarkably similar planets around red giant branch stars

63   0   0.0 ( 0 )
 نشر من قبل Samuel Grunblatt
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite more than 20 years since the discovery of the first gas giant planet with an anomalously large radius, the mechanism for planet inflation remains unknown. Here, we report the discovery of EPIC228754001.01, an inflated gas giant planet found with the NASA K2 Mission, and a revised mass for another inflated planet, K2-97b. These planets reside on ~9 day orbits around host stars which recently evolved into red giants. We constrain the irradiation history of these planets using models constrained by asteroseismology and Keck/HIRES spectroscopy and radial velocity measurements. We measure planet radii of 1.31 +- 0.11 Rjup and and 1.30 +- 0.07 Rjup, respectively. These radii are typical for planets receiving the current irradiation, but not the former, zero age main sequence irradiation of these planets. This suggests that the current sizes of these planets are directly correlated to their current irradiation. Our precise constraints of the masses and radii of the stars and planets in these systems allow us to constrain the planetary heating efficiency of both systems as 0.03% +0.03%/-0.02%. These results are consistent with a planet re-inflation scenario, but suggest the efficiency of planet re-inflation may be lower than previously theorized. Finally, we discuss the agreement within 10% of stellar masses and radii, and planet masses, radii, and orbital periods of both systems and speculate that this may be due to selection bias in searching for planets around evolved stars.



قيم البحث

اقرأ أيضاً

We present results from a radial-velocity survey of 373 giant stars at Lick Observatory, which started in 1999. The previously announced planets iota Dra b and Pollux b are confirmed by continued monitoring. The frequency of detected planetary compan ions appears to increase with metallicity. The star nu Oph is orbited by two brown dwarf companions with masses of 22.3 M_Jup and 24.5 M_Jup in orbits with a period ratio close to 6:1. It is likely that the two companions to nu Oph formed in a disk around the star.
Strongly irradiated giant planets are observed to have radii larger than thermal evolution models predict. Although these inflated planets have been known for over fifteen years, it is unclear whether their inflation is caused by deposition of energy from the host star, or inhibited cooling of the planet. These processes can be distinguished if the planet becomes highly irradiated only when the host star evolves onto the red giant branch. We report the discovery of K2-97b, a 1.31 $pm$ 0.11 R$_mathrm{J}$, 1.10 $pm$ 0.11 M$_mathrm{J}$ planet orbiting a 4.20 $pm$ 0.14 R$_odot$, 1.16 $pm$ 0.12 M$_odot$ red giant star with an orbital period of 8.4 days. We precisely constrained stellar and planetary parameters by combining asteroseismology, spectroscopy, and granulation noise modeling along with transit and radial velocity measurements. The uncertainty in planet radius is dominated by systematic differences in transit depth, which we measure to be up to 30% between different lightcurve reduction methods. Our calculations indicate the incident flux on this planet was 170$^{+140}_{-60}$ times the incident flux on Earth while the star was on the main sequence. Previous studies suggest that this incident flux is insufficient to delay planetary cooling enough to explain the present planet radius. This system thus provides the first evidence that planets may be inflated directly by incident stellar radiation rather than by delayed loss of heat from formation. Further studies of planets around red giant branch stars will confirm or contradict this hypothesis, and may reveal a new class of re-inflated planets.
We report the discovery of Kepler-432b, a giant planet ($M_b = 5.41^{+0.32}_{-0.18} M_{rm Jup}, R_b = 1.145^{+0.036}_{-0.039} R_{rm Jup}$) transiting an evolved star $(M_star = 1.32^{+0.10}_{-0.07} M_odot, R_star = 4.06^{+0.12}_{-0.08} R_odot)$ with an orbital period of $P_b = 52.501129^{+0.000067}_{-0.000053}$ days. Radial velocities (RVs) reveal that Kepler-432b orbits its parent star with an eccentricity of $e = 0.5134^{+0.0098}_{-0.0089}$, which we also measure independently with asterodensity profiling (AP; $e=0.507^{+0.039}_{-0.114}$), thereby confirming the validity of AP on this particular evolved star. The well-determined planetary properties and unusually large mass also make this planet an important benchmark for theoretical models of super-Jupiter formation. Long-term RV monitoring detected the presence of a non-transiting outer planet (Kepler-432c; $M_c sin{i_c} = 2.43^{+0.22}_{-0.24} M_{rm Jup}, P_c = 406.2^{+3.9}_{-2.5}$ days), and adaptive optics imaging revealed a nearby (0farcs87), faint companion (Kepler-432B) that is a physically bound M dwarf. The host star exhibits high signal-to-noise asteroseismic oscillations, which enable precise measurements of the stellar mass, radius and age. Analysis of the rotational splitting of the oscillation modes additionally reveals the stellar spin axis to be nearly edge-on, which suggests that the stellar spin is likely well-aligned with the orbit of the transiting planet. Despite its long period, the obliquity of the 52.5-day orbit may have been shaped by star-planet interaction in a manner similar to hot Jupiter systems, and we present observational and theoretical evidence to support this scenario. Finally, as a short-period outlier among giant planets orbiting giant stars, study of Kepler-432b may help explain the distribution of massive planets orbiting giant stars interior to 1 AU.
K2-146 is a cool, 0.358 M_sun dwarf that was found to host a mini-Neptune with a 2.67-days period. The planet exhibited strong transit timing variations (TTVs) of greater than 30 minutes, indicative of the presence of a further object in the system. Here we report the discovery of the previously undetected outer planet, K2-146 c, in the system using additional photometric data. K2-146 c was found to have a grazing transit geometry and a 3.97-day period. The outer planet was only significantly detected in the latter K2 campaigns presumably because of precession of its orbital plane. The TTVs of K2-146 b and c were measured using observations spanning a baseline of almost 1200 days. We found strong anti-correlation in the TTVs, suggesting the two planets are gravitationally interacting. Our TTV and transit model analyses revealed that K2-146 b has a radius of 2.25 $pm$ 0.10 R_earth and a mass of 5.6 $pm$ 0.7 M_earth, whereas K2-146 c has a radius of $2.59_{-0.39}^{+1.81}$ R_earth and a mass of 7.1 $pm$ 0.9 M_earth. The inner and outer planets likely have moderate eccentricities of $e = 0.14 pm 0.07$ and $0.16 pm 0.07$, respectively. Long-term numerical integrations of the two-planet orbital solution show that it can be dynamically stable for at least 2 Myr. The evaluation of the resonance angles of the planet pair indicates that K2-146 b and c are likely trapped in a 3:2 mean motion resonance. The orbital architecture of the system points to a possible convergent migration origin.
We report precise mass and density measurements of two extremely hot sub-Neptune-size planets from the K2 mission using radial velocities, K2 photometry, and adaptive optics imaging. K2-66 harbors a close-in sub-Neptune-sized (2.49$^{+0.34}_{-0.24} R _oplus$) planet (K2-66b) with a mass of 21.3 $pm$ 3.6 $M_oplus$. Because the star is evolving up the sub-giant branch, K2-66b receives a high level of irradiation, roughly twice the main sequence value. K2-66b may reside within the so-called photoevaporation desert, a domain of planet size and incident flux that is almost completely devoid of planets. Its mass and radius imply that K2-66b has, at most, a meager envelope fraction (< 5%) and perhaps no envelope at all, making it one of the largest planets without a significant envelope. K2-106 hosts an ultra-short-period planet ($P$ = 13.7 hrs) that is one of the hottest sub-Neptune-size planets discovered to date. Its radius (1.82$^{+0.20}_{-0.14} R_oplus$) and mass (9.0 $pm$ 1.6 $M_oplus$) are consistent with a rocky composition, as are all other small ultra-short-period planets with well-measured masses. K2-106 also hosts a larger, longer-period planet (Rp = 2.77$^{+0.37}_{-0.23} R_oplus$, $P$ = 13.3 days) with a mass less than 24.4 $M_oplus$ at 99.7% confidence. K2-66b and K2-106b probe planetary physics in extreme radiation environments. Their high densities reflect the challenge of retaining a substantial gas envelope in such extreme environments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا