ﻻ يوجد ملخص باللغة العربية
We conceive an all-optical representation of the dynamics of two distinct types of interacting bosons in a double well by an array of evanescently coupled photonic waveguides. Many-particle interference effects are probed for various interaction strengths by changing the relative abundance of the particle species and can be readily identified by monitoring the propagation of the light intensity across the waveguide array. In particular, we show that finite inter-particle interaction strengths reduce the many-particle interference contrast by dephasing. A general description of the many-particle dynamics for arbitrary initial states is given in terms of two coupled spins by generalising the Schwinger representation to two particle species.
The out-of-equilibrium quantum dynamics of an interacting Bose gas trapped in a 1D asymmetric double-well potential is studied by solving the many-body Schrodinger equation numerically accurately. We examine how the loss of symmetry of the confining
We study the influence of photons on the dynamics and the ground state of the atoms in a Bosonic Josephson junction inside an optical resonator. The system is engineered in such a way that the atomic tunneling can be tuned by changing the number of p
Measure synchronization (MS) in a two-species bosonic Josephson junction (BJJ) is studied based on semi-classical theory. Six different scenarios for MS, including two in the Josephson oscillation regime (0 phase mode) and four in the self-trapping r
In this article we use time-dependent Josephson coupling to enhance unconventional photon blockade in a system of two coupled nonlinear bosonic modes which are initially loaded with weakly populated coherent states, so the evolution is restricted to
We theoretically investigate the properties of a double-well bosonic Josephson junction coupled to a single trapped ion. We find that the coupling between the wells can be controlled by the internal state of the ion, which can be used for studying me