ترغب بنشر مسار تعليمي؟ اضغط هنا

Hierarchical Label Inference for Video Classification

131   0   0.0 ( 0 )
 نشر من قبل Nelson Nauata Junior
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Videos are a rich source of high-dimensional structured data, with a wide range of interacting components at varying levels of granularity. In order to improve understanding of unconstrained internet videos, it is important to consider the role of labels at separate levels of abstraction. In this paper, we consider the use of the Bidirectional Inference Neural Network (BINN) for performing graph-based inference in label space for the task of video classification. We take advantage of the inherent hierarchy between labels at increasing granularity. The BINN is evaluated on the first and second release of the YouTube-8M large scale multilabel video dataset. Our results demonstrate the effectiveness of BINN, achieving significant improvements against baseline models.



قيم البحث

اقرأ أيضاً

We report on CMU Informedia Labs system used in Googles YouTube 8 Million Video Understanding Challenge. In this multi-label video classification task, our pipeline achieved 84.675% and 84.662% GAP on our evaluation split and the official test set. W e attribute the good performance to three components: 1) Refined video representation learning with residual links and hypercolumns 2) Latent concept mining which captures interactions among concepts. 3) Learning with temporal segments and weighted multi-model ensemble. We conduct experiments to validate and analyze the contribution of our models. We also share some unsuccessful trials leveraging conventional approaches such as recurrent neural networks for video representation learning for this large-scale video dataset. All the codes to reproduce our results are publicly available at https://github.com/Martini09/informedia-yt8m-release.
Video-and-Language Inference is a recently proposed task for joint video-and-language understanding. This new task requires a model to draw inference on whether a natural language statement entails or contradicts a given video clip. In this paper, we study how to address three critical challenges for this task: judging the global correctness of the statement involved multiple semantic meanings, joint reasoning over video and subtitles, and modeling long-range relationships and complex social interactions. First, we propose an adaptive hierarchical graph network that achieves in-depth understanding of the video over complex interactions. Specifically, it performs joint reasoning over video and subtitles in three hierarchies, where the graph structure is adaptively adjusted according to the semantic structures of the statement. Secondly, we introduce semantic coherence learning to explicitly encourage the semantic coherence of the adaptive hierarchical graph network from three hierarchies. The semantic coherence learning can further improve the alignment between vision and linguistics, and the coherence across a sequence of video segments. Experimental results show that our method significantly outperforms the baseline by a large margin.
Attributes act as intermediate representations that enable parameter sharing between classes, a must when training data is scarce. We propose to view attribute-based image classification as a label-embedding problem: each class is embedded in the spa ce of attribute vectors. We introduce a function that measures the compatibility between an image and a label embedding. The parameters of this function are learned on a training set of labeled samples to ensure that, given an image, the correct classes rank higher than the incorrect ones. Results on the Animals With Attributes and Caltech-UCSD-Birds datasets show that the proposed framework outperforms the standard Direct Attribute Prediction baseline in a zero-shot learning scenario. Label embedding enjoys a built-in ability to leverage alternative sources of information instead of or in addition to attributes, such as e.g. class hierarchies or textual descriptions. Moreover, label embedding encompasses the whole range of learning settings from zero-shot learning to regular learning with a large number of labeled examples.
Visual data such as images and videos contain a rich source of structured semantic labels as well as a wide range of interacting components. Visual content could be assigned with fine-grained labels describing major components, coarse-grained labels depicting high level abstractions, or a set of labels revealing attributes. Such categorization over different, interacting layers of labels evinces the potential for a graph-based encoding of label information. In this paper, we exploit this rich structure for performing graph-based inference in label space for a number of tasks: multi-label image and video classification and action detection in untrimmed videos. We consider the use of the Bidirectional Inference Neural Network (BINN) and Structured Inference Neural Network (SINN) for performing graph-based inference in label space and propose a Long Short-Term Memory (LSTM) based extension for exploiting activity progression on untrimmed videos. The methods were evaluated on (i) the Animal with Attributes (AwA), Scene Understanding (SUN) and NUS-WIDE datasets for multi-label image classification, (ii) the first two releases of the YouTube-8M large scale dataset for multi-label video classification, and (iii) the THUMOS14 and MultiTHUMOS video datasets for action detection. Our results demonstrate the effectiveness of structured label inference in these challenging tasks, achieving significant improvements against baselines.
80 - Ya Wang , Dongliang He , Fu Li 2019
Images or videos always contain multiple objects or actions. Multi-label recognition has been witnessed to achieve pretty performance attribute to the rapid development of deep learning technologies. Recently, graph convolution network (GCN) is lever aged to boost the performance of multi-label recognition. However, what is the best way for label correlation modeling and how feature learning can be improved with label system awareness are still unclear. In this paper, we propose a label graph superimposing framework to improve the conventional GCN+CNN framework developed for multi-label recognition in the following two aspects. Firstly, we model the label correlations by superimposing label graph built from statistical co-occurrence information into the graph constructed from knowledge priors of labels, and then multi-layer graph convolutions are applied on the final superimposed graph for label embedding abstraction. Secondly, we propose to leverage embedding of the whole label system for better representation learning. In detail, lateral connections between GCN and CNN are added at shallow, middle and deep layers to inject information of label system into backbone CNN for label-awareness in the feature learning process. Extensive experiments are carried out on MS-COCO and Charades datasets, showing that our proposed solution can greatly improve the recognition performance and achieves new state-of-the-art recognition performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا