ﻻ يوجد ملخص باللغة العربية
We present high precision, model independent, mass and radius measurements for 16 white dwarfs in detached eclipsing binaries and combine these with previously published data to test the theoretical white dwarf mass-radius relationship. We reach a mean precision of 2.4 per cent in mass and 2.7 per cent in radius, with our best measurements reaching a precision of 0.3 per cent in mass and 0.5 per cent in radius. We find excellent agreement between the measured and predicted radii across a wide range of masses and temperatures. We also find the radii of all white dwarfs with masses less than 0.48M$_odot$ to be fully consistent with helium core models, but they are on average 9 per cent larger than those of carbon-oxygen core models. In contrast, white dwarfs with masses larger than 0.52M$_odot$ all have radii consistent with carbon-oxygen core models. Moreover, we find that all but one of the white dwarfs in our sample have radii consistent with possessing thick surface hydrogen envelopes ($10^{-5} ge M_mathrm{H}/M_mathrm{WD} ge 10^{-4}$), implying that the surface hydrogen layers of these white dwarfs are not obviously affected by common envelope evolution.
The mass-radius relation of white dwarfs is largely determined by the equation of state of degenerate electrons, which causes the stellar radius to decrease as mass increases. Here we observationally measure this relation using the gravitational reds
We estimate the merger rate of double degenerate binaries containing extremely low mass (ELM) <0.3 Msun white dwarfs in the Galaxy. Such white dwarfs are detectable for timescales of 0.1 Gyr -- 1 Gyr in the ELM Survey; the binaries they reside in hav
Stars are stretched by tidal interactions in tight binaries, and changes to their projected areas introduce photometric variations twice per orbit. Hermes et al. (2014, ApJ, 792, 39) utilized measurements of these ellipsoidal variations to constrain
HIP96515A is a double-lined spectroscopic binary with a visual companion (HIP96515B) at 8.6 arcsec. It is included in the SACY catalog as a potential young star and classified as an eclipsing binary in the ASAS Catalog. We have analyzed spectroscopic
We report on the search for new eclipsing white dwarf plus main-sequence (WDMS) binaries in the light curves of the Catalina surveys. We use a colour selected list of almost 2000 candidate WDMS systems from the Sloan Digital Sky Survey, specifically