ترغب بنشر مسار تعليمي؟ اضغط هنا

Extreme value statistics for two-dimensional convective penetration in a pre-Main Sequence star

82   0   0.0 ( 0 )
 نشر من قبل Jane Pratt
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We examine a penetration layer formed between a central radiative zone and a large convection zone in the deep interior of a young low-mass star. Using the Multidimensional Stellar Implicit Code (MUSIC) to simulate two-dimensional compressible stellar convection in a spherical geometry over long times, we produce statistics that characterize the extent and impact of convective penetration in this layer. We apply extreme value theory to the maximal extent of convective penetration at any time. We compare statistical results from simulations which treat non-local convection, throughout a large portion of the stellar radius, with simulations designed to treat local convection in a small region surrounding the penetration layer. For each of these situations, we compare simulations of different resolution, which have different velocity magnitudes. We also compare statistical results between simulations that radiate energy at a constant rate to those that allow energy to radiate from the stellar surface according to the local surface temperature. Based on the frequency and depth of penetrating convective structures, we observe two distinct layers that form between the convection zone and the stable radiative zone. We show that the probability density function of the maximal depth of convective penetration at any time corresponds closely in space with the radial position where internal waves are excited. We find that the maximal penetration depth can be modeled by a Weibull distribution with a small shape parameter. Using these results, and building on established scalings for diffusion enhanced by large-scale convective motions, we propose a new form for the diffusion coefficient that may be used for one-dimensional stellar evolution calculations in the large Peclet number regime. These results should contribute to the 321D link.

قيم البحث

اقرأ أيضاً

103 - J. Pratt , I. Baraffe , T. Goffrey 2020
Extending our recent studies of two-dimensional stellar convection to 3D, we compare three-dimensional hydrodynamic simulations to identically set-up two-dimensional simulations, for a realistic pre-main sequence star. We compare statistical quantiti es related to convective flows including: average velocity, vorticity, local enstrophy, and penetration depth beneath a convection zone. These statistics are produced during stationary, steady-state compressible convection in the stars convection zone. Our simulations with the MUSIC code confirm the common result that two-dimensional simulations of stellar convection have a higher magnitude of velocity on average than three-dimensional simulations. Boundary conditions and the extent of the spherical shell can affect the magnitude and variability of convective velocities. The difference between 2D and 3D velocities is dependent on these background points; in our simulations this can have an effect as large as the difference resulting from the dimensionality of the simulation. Nevertheless, radial velocities near the convective boundary are comparable in our 2D and 3D simulations. The average local enstrophy of the flow is lower for two-dimensional simulations than for three-dimensional simulations, indicating a different shape and structuring of 3D stellar convection. We perform a statistical analysis of the depth of convective penetration below the convection zone, using the model proposed in our recent study (Pratt et al. 2017). Here we analyze the convective penetration in three dimensional simulations, and compare the results to identically set-up 2D simulations. In 3D the penetration depth is as large as the penetration depth calculated from 2D simulations.
Statistics of low-mass pre-main sequence binaries in the Orion OB1 association with separations ranging from 0.6 to 20 (220 to 7400 au at 370 pc) are studied using images from the VISTA Orion mini-survey and astrometry from Gaia. The input sample bas ed on the CVSO catalog contains 1137 stars of K and M spectral types (masses between 0.3 and 0.9 Msun), 1021 of which are considered to be association members. There are 135 physical binary companions to these stars with mass ratios above ~0.13. The average companion fraction is 0.09+-0.01 over 1.2 decades in separation, slightly less than, but still consistent with, the field. We found a difference between the Ori OB1a and OB1b groups, the latter being richer in binaries by a factor 1.6+-0.3. No overall dependence of the wide-binary frequency on the observed underlying stellar density is found, although in the Ori OB1a off-cloud population these binaries seem to avoid dense clusters. The multiplicity rates in Ori OB1 and in sparse regions like Taurus differ significantly, hinting that binaries in the field may originate from a mixture of diverse populations.
Magnetic fields are at the heart of the observed stellar activity in late-type stars, and they are presumably generated by a dynamo mechanism at the interface layer between the radiative and the convective stellar regions. Since dynamo models are bas ed on the interaction between differential rotation and convective motions, the introduction of rotation in the ATON 2.3 stellar code allows for explorations regarding a physically consistent treatment of magnetic effects in stellar structure and evolution, even though there are formidable mathematical and numerical challenges involved. As examples, we present theoretical estimates for both the local (tau_c) and global (tau_g) convective turnover times for rotating pre-main sequence solar-type stars, based on up-to-date input physics for stellar models. Our theoretical predictions are compared with the previous ones available in the literature. In addition, we investigate the dependence of the convective turnover time on convection regimes, the presence of rotation and atmospheric treatment. Those estimates, this quantities can be used to calculate the Rossby number, Ro, which is related to the magnetic activity strength in dynamo theories and, at least for main-sequence stars, shows an observational correlation with stellar activity. More important, they can also contribute for testing stellar models against observations. Our theoretical values of tau_c, tau_g and Ro qualitatively agree with those published by Kim & Demarque (1996). By increasing the convection efficiency, tau_g decreases for a given mass. FST models show still lower values. The presence of rotation shifts tau_g towards slightly higher values when compared with non-rotating models. The use of non-gray boundary conditions in the models yields values of tau_g smaller than in the gray approximation.
Context: We study the impact of two-dimensional spherical shells on compressible convection. Realistic profiles for density and temperature from a one-dimensional stellar evolution code are used to produce a model of a large stellar convection zone r epresentative of a young low-mass star. Methods: We perform hydrodynamic implicit large-eddy simulations of compressible convection using the MUltidimensional Stellar Implicit Code (MUSIC). Because MUSIC has been designed to use realistic stellar models produced from one-dimensional stellar evolution calculations, MUSIC simulations are capable of seamlessly modeling a whole star. Simulations in two-dimensional spherical shells that have different radial extents are performed over hundreds of convective turnover times, permitting the collection of well-converged statistics. Results: We evaluate basic statistics of the convective turnover time, the convective velocity, and the overshooting layer. These quantities are selected for their relevance to one-dimensional stellar evolution calculations, so that our results are focused toward the 321D link. The inclusion in the spherical shell of the boundary between the radiative and convection zones decreases the amplitude of convective velocities in the convection zone. The inclusion of near-surface layers in the spherical shell can increase the amplitude of convective velocities, although the radial structure of the velocity profile established by deep convection is unchanged. The impact from including the near-surface layers depends on the speed and structure of small-scale convection in the near-surface layers. Larger convective velocities in the convection zone result in a commensurate increase in the overshooting layer width and decrease in the convective turnover time. These results provide support for non-local aspects of convection.
3D hydrodynamics models of deep stellar convection exhibit turbulent entrainment at the convective-radiative boundary which follows the entrainment law, varying with boundary penetrability. We implement the entrainment law in the 1D Geneva stellar ev olution code. We then calculate models between 1.5 and 60 M$_{odot}$ at solar metallicity ($Z=0.014$) and compare them to previous generations of models and observations on the main sequence. The boundary penetrability, quantified by the bulk Richardson number, $Ri_{mathrm{B}}$, varies with mass and to a smaller extent with time. The variation of $Ri_{mathrm{B}}$ with mass is due to the mass dependence of typical convective velocities in the core and hence the luminosity of the star. The chemical gradient above the convective core dominates the variation of $Ri_{mathrm{B}}$ with time. An entrainment law method can therefore explain the apparent mass dependence of convective boundary mixing through $Ri_{mathrm{B}}$. New models including entrainment can better reproduce the mass dependence of the main sequence width using entrainment law parameters $A sim 2 times 10^{-4}$ and $n=1$. We compare these empirically constrained values to the results of 3D hydrodynamics simulations and discuss implications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا