ﻻ يوجد ملخص باللغة العربية
We propose a novel approach to 3D human pose estimation from a single depth map. Recently, convolutional neural network (CNN) has become a powerful paradigm in computer vision. Many of computer vision tasks have benefited from CNNs, however, the conventional approach to directly regress 3D body joint locations from an image does not yield a noticeably improved performance. In contrast, we formulate the problem as estimating per-voxel likelihood of key body joints from a 3D occupancy grid. We argue that learning a mapping from volumetric input to volumetric output with 3D convolution consistently improves the accuracy when compared to learning a regression from depth map to 3D joint coordinates. We propose a two-stage approach to reduce the computational overhead caused by volumetric representation and 3D convolution: Holistic 2D prediction and Local 3D prediction. In the first stage, Planimetric Network (P-Net) estimates per-pixel likelihood for each body joint in the holistic 2D space. In the second stage, Volumetric Network (V-Net) estimates the per-voxel likelihood of each body joints in the local 3D space around the 2D estimations of the first stage, effectively reducing the computational cost. Our model outperforms existing methods by a large margin in publicly available datasets.
We propose a new 3D holistic++ scene understanding problem, which jointly tackles two tasks from a single-view image: (i) holistic scene parsing and reconstruction---3D estimations of object bounding boxes, camera pose, and room layout, and (ii) 3D h
In this paper, we propose a pose grammar to tackle the problem of 3D human pose estimation. Our model directly takes 2D pose as input and learns a generalized 2D-3D mapping function. The proposed model consists of a base network which efficiently cap
Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human bod
We present an approach to recover absolute 3D human poses from multi-view images by incorporating multi-view geometric priors in our model. It consists of two separate steps: (1) estimating the 2D poses in multi-view images and (2) recovering the 3D
Recent progress in stochastic motion prediction, i.e., predicting multiple possible future human motions given a single past pose sequence, has led to producing truly diverse future motions and even providing control over the motion of some body part