ﻻ يوجد ملخص باللغة العربية
Calculation of the potential field inside a three-dimensional box with the normal magnetic field component given on all boundaries is needed for estimation of important quantities related to the magnetic field such as free energy and relative helicity. In this work we present an analysis of three methods for calculating potential field inside a three-dimensional box. The accuracy and performance of the methods are tested on artificial models with a priori known solutions.
In an additive group (G,+), a three-dimensional corner is the four points g, g+d(1,0,0), g+d(0,1,0), g+d(0,0,1), where g is in G^3, and d is a non-zero element of G. The Ramsey number of interest is R_3(G) the maximal cardinality of a subset of G^3 t
I calculate finite-volume effects for three identical spin-1/2 fermions in a box assuming short-ranged repulsive interactions of `natural size. This analysis employs standard perturbation theory in powers of 1/L, where L^3 is the volume of the box. I
In this paper, we study the relativistic effects in a three-body bound state. For this purpose, the relativistic form of the Faddeev equations is solved in momentum space as a function of the Jacobi momentum vectors without using a partial wave decom
An algorithm for calculating three gauge-invariant helicities (self-, mutual- and Berger relative helicity) for a magnetic field specified in a rectangular box is described. The algorithm is tested on a well-known force-free model (Low and Lou, 1990) presented in vector-potential form.
The Coronal Multichannel Polarimeter (CoMP) routinely performs coronal polarimetric measurements using the Fe XIII 10747 $AA$ and 10798 $AA$ lines, which are sensitive to the coronal magnetic field. However, inverting such polarimetric measurements i