ترغب بنشر مسار تعليمي؟ اضغط هنا

Photon beam asymmetry $Sigma$ in the reaction $vec{gamma} p to p omega$ for $E_gamma$ = 1.152 to 1.876 GeV

269   0   0.0 ( 0 )
 نشر من قبل Barry Ritchie
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Photon beam asymmetry $Sigma$ measurements for $omega$ photoproduction in the reaction $vec{gamma} p to omega p$ are reported for photon energies from 1.152 to 1.876 GeV. Data were taken using a linearly-polarized tagged photon beam, a cryogenic hydrogen target, and the CLAS spectrometer in Hall B at Jefferson Lab. The measurements obtained markedly increase the size of the database for this observable, extend coverage to higher energies, and resolve discrepancies in previously published data. Comparisons of these new results with predictions from a chiral-quark-based model and from a dynamical coupled-channels model indicate the importance of interferences between $t$-channel meson exchange and $s$- and $u$-channel contributions, underscoring sensitivity to the nucleon resonances included in those descriptions. Comparisons with the Bonn-Gatchina partial-wave analysis indicate the $Sigma$ data reported here help to fix the magnitudes of the interference terms between the leading amplitudes in that calculation (Pomeron exchange and the resonant portion of the $J^P=3/2^+$ partial wave), as well as the resonant portions of the smaller partial waves with $J^P$= $1/2^-$, $3/2^-$, and $5/2^+$.



قيم البحث

اقرأ أيضاً

Differential cross sections for the reaction $gamma p to K^{*0} Sigma^+$ are presented at nine bins in photon energy in the range from 1.7 to 3.0 GeV. The kstar was detected by its decay products, $K^+pi^-$, in the CLAS detector at Jefferson Lab. The se data are the first kstar photoproduction cross sections ever published over a broad range of angles. Comparison with a theoretical model based on the vector and tensor $K^*$-quark couplings shows good agreement with the data in general, after adjusting the models two parameters in a fit to our data. Disagreement between the data at forward angles and the global angle-energy fit to the model suggests that the role of scalar $kappa$ meson exchange in $t$-channel diagrams should be investigated.
We report measurements of the photon beam asymmetry $Sigma$ for the reaction $vec{gamma} pto K^+Sigma^0$(1193) using the GlueX spectrometer in Hall D at Jefferson Lab. Data were collected using a linearly polarized photon beam in the energy range of 8.2-8.8 GeV incident on a liquid hydrogen target. The beam asymmetry $Sigma$ was measured as a function of the Mandelstam variable $t$, and a single value of $Sigma$ was extracted for events produced in the $u$-channel. These are the first exclusive measurements of the photon beam asymmetry $Sigma$ for the reaction in this energy range. For the $t$-channel, the measured beam asymmetry is close to unity over the $t$-range studied, $-t=(0.1-1.4)~$(GeV/$c$)$^{2}$, with an average value of $Sigma = 1.00pm 0.05$. This agrees with theoretical models that describe the reaction via the natural-parity exchange of the $K^{*}$(892) Regge trajectory. A value of $Sigma = 0.41 pm 0.09$ is obtained for the $u$-channel integrated up to $-u=2.0$~(GeV/$c$)$^{2}$.
First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction $vec gamma vec p to pi^+n$, has been measured using a circularly polarized tagged-photon beam, wit h energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, Julich, and SAID groups.
72 - D. Ho , P. Peng , C. Bass 2017
We report the first beam-target double-polarization asymmetries in the $gamma + n(p) rightarrow pi^- + p(p)$ reaction spanning the nucleon resonance region from invariant mass $W$= $1500$ to $2300$ MeV. Circularly polarized photons and longitudinally polarized deuterons in $H!D$ have been used with the CLAS detector at Jefferson Lab. The exclusive final state has been extracted using three very different analyses that show excellent agreement, and these have been used to deduce the {it{E}} polarization observable for an effective neutron target. These results have been incorporated into new partial wave analyses, and have led to significant revisions for several $gamma nN^*$ resonance photo-couplings.
176 - I. Schulday , R. Lawall , J. Barth 2010
The reactions $gamma p rightarrow K^{+}Sigma^{pm}pi^{mp}$ were studied with the SAPHIR detector using a tagged photon beam at the electron stretcher facility ELSA in Bonn. The decays $Sigma^{-} rightarrow npi^{-}$ and $Sigma^{+} rightarrow npi^{+}, p pi^0$ were fully reconstructed. Reaction cross sections were measured as a function of the photon energy from threshold up to $2.6,$GeV with considerably improved statistics compared to a previous bubble chamber measurement. The cross sections rise monotonously with increasing photon energy. The two-particle mass distributions of $Sigma^{pm}pi^{mp}$ and $K^+pi^-$ show substantial production of resonant states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا