ﻻ يوجد ملخص باللغة العربية
Similarity join, which can find similar objects (e.g., products, names, addresses) across different sources, is powerful in dealing with variety in big data, especially web data. Threshold-driven similarity join, which has been extensively studied in the past, assumes that a user is able to specify a similarity threshold, and then focuses on how to efficiently return the object pairs whose similarities pass the threshold. We argue that the assumption about a well set similarity threshold may not be valid for two reasons. The optimal thresholds for different similarity join tasks may vary a lot. Moreover, the end-to-end time spent on similarity join is likely to be dominated by a back-and-forth threshold-tuning process. In response, we propose preference-driven similarity join. The key idea is to provide several result-set preferences, rather than a range of thresholds, for a user to choose from. Intuitively, a result-set preference can be considered as an objective function to capture a users preference on a similarity join result. Once a preference is chosen, we automatically compute the similarity join result optimizing the preference objective. As the proof of concept, we devise two useful preferences and propose a novel preference-driven similarity join framework coupled with effective optimization techniques. Our approaches are evaluated on four real-world web datasets from a diverse range of application scenarios. The experiments show that preference-driven similarity join can achieve high-quality results without a tedious threshold-tuning process.
We introduce and study the problem of computing the similarity self-join in a streaming context (SSSJ), where the input is an unbounded stream of items arriving continuously. The goal is to find all pairs of items in the stream whose similarity is gr
Given two collections of set objects $R$ and $S$, the $R bowtie_{subseteq} S$ set containment join returns all object pairs $(r, s) in R times S$ such that $r subseteq s$. Besides being a basic operator in all modern data management systems with a wi
In the big data era, massive amount of multimedia data with geo-tags has been generated and collected by mobile smart devices equipped with mobile communications module and position sensor module. This trend has put forward higher request on large-sc
Traditional relational data interfaces require precise structured queries over potentially complex schemas. These rigid data retrieval mechanisms pose hurdles for non-expert users, who typically lack language expertise and are unfamiliar with the det
XML data warehouses form an interesting basis for decision-support applications that exploit complex data. However, native-XML database management systems (DBMSs) currently bear limited performances and it is necessary to research for ways to optimiz