ﻻ يوجد ملخص باللغة العربية
We theoretically study the lattice relaxation in the twisted bilayer graphene (TBG) and its effect on the electronic band structure. We develop an effective continuum theory to describe the lattice relaxation in general TBGs and obtain the optimized structure to minimize the total energy. At small rotation angles $< 2^{circ}$, in particular, we find that the relaxed lattice drastically reduces the area of AA-stacking region, and form a triangular domain structure with alternating AB and BA stacking regions. We then investigate the effect of the domain formation on the electronic band structure. The most notable change from the non-relaxed model is that an energy gap up to 20meV opens at the superlattice subband edges on the electron and hole sides. We also find that the lattice relaxation significantly enhances the Fermi velocity, which was strongly suppressed in the non-relaxed model.
The structural and electronic properties of twisted bilayer graphene are investigated from first principles and tight binding approach as a function of the twist angle (ranging from the first magic angle $theta=1.08^circ$ to $theta=3.89^circ$, with t
The generalized tight-binding model, based on the subenvelope functions of distinct sublattices, is developed to investigate the magnetic quantization in sliding bilayer graphenes. The relative shift of two graphene layers induces a dramatic transfor
Evidence of flat-band magnetism and half-metallicity in compressed twisted bilayer graphene is provided with first-principles calculations. We show that dynamic band-structure engineering in twisted bilayer graphene is possible by controlling the che
We report the infrared transmission measurement on electrically gated twisted bilayer graphene. The optical absorption spectrum clearly manifests the dramatic changes such as the splitting of inter-linear-band absorption step, the shift of inter-van
Twisted bilayer graphene (TBG) hosts nearly flat bands with narrow bandwidths of a few meV at certain {em magic} twist angles. Here we show that in twisted gapped Dirac material bilayers, or massive twisted bilayer graphenes (MTBG), isolated nearly f