ﻻ يوجد ملخص باللغة العربية
This article is proposed to investigate the impacts of heat and mass transfer in magnetohydrodynamic casson fluid embedded in porous medium. The generalized solutions have been traced out for the temperature distribution, mass concentration and velocity profiles under the existence and non-existence of transverse magnetic field, permeability and porosity. The corresponding solutions of temperature distribution and mass concentration, velocity profiles are expressed in terms of newly defined generalized Robotnov-Hartley function, wright function and Mittage-Leffler function respectively. All the corresponding solutions fulfill necessary conditions (initial, natural and boundary conditions) as well. Caputo Fractionalized solutions have been converted for ordinary solutions by substituting {zeta}=1. Some similar solutions for the temperature distribution, mass concentration and velocity profiles have been particularized form generalized solutions. Owing to the rheology of problem, graphical illustrations of distinct parameters are discussed in detail by depicting figures using Mathcad software (15).
Immiscible fluid displacement in porous media is fundamental for many environmental processes, including infiltration of water in soils, groundwater remediation, enhanced recovery of hydrocarbons and carbon geosequestration. Microstructural heterogen
The surface texture of materials plays a critical role in wettability, turbulence and transport phenomena. In order to design surfaces for these applications, it is desirable to characterise non-smooth and porous materials by their ability to exchang
We numerically study the Rayleigh-Benard (RB) convection in two-dimensional model emulsions confined between two parallel walls at fixed temperatures. The systems under study are heterogeneous, with finite-size droplets dispersed in a continuous phas
We develop a two-fluid model (TFM) for simulation of thermal transport coupled to particle migration in flows of non-Brownian suspensions. Specifically, we propose a closure relation for the inter-phase heat transfer coefficient of the TFM as a funct
Direct Numerical Simulations are used to solve turbulent flow and heat transfer over a variety of rough walls in a channel. The wall geometries are exactly resolved in the simulations. The aim is to understand the effect of roughness morphology and i