ترغب بنشر مسار تعليمي؟ اضغط هنا

Multiple types of topological fermions in transition metal silicides

389   0   0.0 ( 0 )
 نشر من قبل Peizhe Tang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Exotic massless fermionic excitations with non-zero Berry flux, other than Dirac and Weyl fermions, could exist in condensed matter systems under the protection of crystalline symmetries, such as spin-1 excitations with 3-fold degeneracy and spin-3/2 Rarita-Schwinger-Weyl fermions. Herein, by using ab initio density functional theory, we show that these unconventional quasiparticles coexist with type-I and type-II Weyl fermions in a family of transition metal silicides, including CoSi, RhSi, RhGe and CoGe, when the spin-orbit coupling (SOC) is considered. Their non-trivial topology results in a series of extensive Fermi arcs connecting projections of these bulk excitations on side surface, which is confirmed by (010) surface electronic spectra of CoSi. In addition, these stable arc states exist within a wide energy window around the Fermi level, which makes them readily accessible in angle-resolved photoemission spectroscopy measurements.



قيم البحث

اقرأ أيضاً

Topological semimetals with different types of band crossings provide a rich platform to realize novel fermionic excitations, known as topological fermions. In particular, some fermionic excitations can be direct analogues of elementary particles in quantum field theory when both obey the same laws of physics in the low-energy limit. Examples include Dirac and Weyl fermions, whose solid-state realizations have provided new insights into long-sought phenomena in high-energy physics. Recently, theorists predicted new types of fermionic excitations in condensed-matter systems without any high-energy counterpart, and their existence is protected by crystalline symmetries. By studying the topology of the electronic structure in PdBiSe using density functional theory calculations and bulk-sensitive soft X-ray angle-resolved photoemission spectroscopy, we demonstrate a coexistence of four different types of topological fermions: Weyl, Rarita-Schwinger-Weyl, double class-II three-component, and charge-2 fourfold fermions. Our discovery provides a remarkable platform to realize multiple novel fermions in a single solid, charting the way forward to studies of their potentially exotic properties as well as their interplay.
Intermetallic silicide compounds, LaScSi and Y$_5$Si$_3$, known for being hydrogen (H) storage materials, are drawing attention as candidates for electrides in which anions are substituted by unbound electrons. It is inferred from a muon spin rotatio n experiment that the local field at the muon site (which is the same site as that for H) in these compounds exhibits a large negative shift under an external magnetic field, which is mostly independent of temperature. Such anomalous diamagnetism signals a unique property of electride electrons associated with transition metals. Moreover, the diamagnetic shift decreases with increasing H content, suggesting that the electride electrons existing coherently in the hollow interstitial positions are adsorbed by H to form hydride ions (H$^-$)
144 - P. Jund , X. Tao , R. Viennois 2011
We report an ab-initio study of the stability and electronic properties of transition metal silicides in order to study their potential for high temperature thermoelectric applications. We focus on the family M5Si3 (M = Ta, W) which is stable up to a bout 2000 {deg}C. We first investigate the structural stability of the two compounds and then determine the thermopower of the equilibrium structure using the electronic density of states and Motts law. We find that W5Si3 has a relatively large thermopower but probably not sufficient enough for thermoelectric applications.
While some of the most elegant applications of topological insulators, such as quantum anomalous Hall effect, require the preservation of Dirac surface states in the presence of time-reversal symmetry breaking, other phenomena such as spin-charge con version rather rely on the ability for these surface states to imprint their spin texture on adjacent magnetic layers. In this work, we investigate the spin-momentum locking of the surface states of a wide range of monolayer transition metals (3$d$-TM) deposited on top of Bi$_{2}$Se$_{3}$ topological insulators using first principles calculations. We find an anticorrelation between the magnetic moment of the 3$d$-TM and the magnitude of the spin-momentum locking {em induced} by the Dirac surface states. While the magnetic moment is large in the first half of the 3$d$ series, following Hunds rule, the spin-momentum locking is maximum in the second half of the series. We explain this trend as arising from a compromise between intra-atomic magnetic exchange and covalent bonding between the 3$d$-TM overlayer and the Dirac surface states. As a result, while Cr and Mn overlayers can be used successfully for the observation of quantum anomalous Hall effect or the realization of axion insulators, Co and Ni are substantially more efficient for spin-charge conversion effects, e.g. spin-orbit torque and charge pumping.
With exceptional electrical and mechanical properties and at the same time air-stability, layered MoSi2N4 has recently draw great attention. However, band structure engineering via strain and electric field, which is vital for practical applications, has not yet been explored. In this work, we show that the biaxial strain and external electric field are effective ways for the band gap engineering of bilayer MoSi$_2$N$_4$ and WSi$_2$N$_4$. It is found that strain can lead to indirect band gap to direct band gap transition. On the other hand, electric field can result in semiconductor to metal transition. Our study provides insights into the band structure engineering of bilayer MoSi$_2$N$_4$ and WSi$_2$N$_4$ and would pave the way for its future nanoelectronics and optoelectronics applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا