ﻻ يوجد ملخص باللغة العربية
The interplay between magnetism and topology, as exemplified in the magnetic skyrmion systems, has emerged as a rich playground for finding novel quantum phenomena and applications in future information technology. Magnetic topological insulators (TI) have attracted much recent attention, especially after the experimental realization of quantum anomalous Hall effect. Future applications of magnetic TI hinge on the accurate manipulation of magnetism and topology by external perturbations, preferably with a gate electric field. In this work, we investigate the magneto transport properties of Cr doped Bi2(SexTe1-x)3 TI across the topological quantum critical point (QCP). We find that the external gate voltage has negligible effect on the magnetic order for samples far away from the topological QCP. But for the sample near the QCP, we observe a ferromagnetic (FM) to paramagnetic (PM) phase transition driven by the gate electric field. Theoretical calculations show that a perpendicular electric field causes a shift of electronic energy levels due to the Stark effect, which induces a topological quantum phase transition and consequently a magnetic phase transition. The in situ electrical control of the topological and magnetic properties of TI shed important new lights on future topological electronic or spintronic device applications.
We show that direct current in a tantalum microstrip can induce steady-state magnetic oscillations in an adjacent nanomagnet through spin torque from the spin Hall effect (SHE). The oscillations are detected electrically via a magnetic tunnel junctio
We study the magnetic proximity effect on a two-dimensional topological insulator in a CrI$_3$/SnI$_3$/CrI$_3$ trilayer structure. From first-principles calculations, the BiI$_3$-type SnI$_3$ monolayer without spin-orbit coupling has Dirac cones at t
The charge ordered La$_{1/3}$Sr$_{2/3}$FeO$_{3-delta}$ (LSFO) in bulk and nanocrystalline forms are investigated using ac and dc magnetization, M{o}ssbauer, and polarised neutron studies. A complex scenario of short range charge and magnetic ordering
Three-dimensional topological insulators (3D-TIs) possess a specific topological order of electronic bands, resulting in gapless surface states via bulk-edge correspondence. Exotic phenomena have been realized in ferromagnetic TIs, such as the quantu
The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic mag