ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast dynamical decoupling of the Molmer-Sorensen entangling gate

64   0   0.0 ( 0 )
 نشر من قبل Tom Manovitz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Engineering entanglement between quantum systems often involves coupling through a bosonic mediator, which should be disentangled from the systems at the operations end. The quality of such an operation is generally limited by environmental and control noise. One of the prime techniques for suppressing noise is by dynamical decoupling, where one actively applies pulses at a rate that is faster than the typical time scale of the noise. However, for boson-mediated gates, current dynamical decoupling schemes require executing the pulses only when the boson and the quantum systems are disentangled. This restriction implies an increase of the gate time by a factor of $sqrt{N}$, with $N$ being the number of pulses applied. Here we propose and realize a method that enables dynamical decoupling in a boson mediated system where the pulses can be applied while spin-boson entanglement persists, resulting in an increase in time that is at most a factor of $frac{pi}{2}$, independently of the number of pulses applied. We experimentally demonstrate the robustness of our fast dynamically decoupled entangling gate to $sigma_z$ noise with ions in a Paul trap.

قيم البحث

اقرأ أيضاً

Coherence time is an essential parameter for quantum sensing, quantum information, and quantum computation. In this work, we demonstrate electron spin coherence times as long as 0.1 s for an ensemble of rubidium atoms trapped in a solid parahydrogen matrix. We explore the underlying physics limiting the coherence time. The properties of these matrix isolated atoms are very promising for future applications, including quantum sensing of nuclear spins. If combined with efficient single-atom readout, this would enable NMR and magnetic resonance imaging of single molecules cotrapped with alkali-metal atom quantum sensors within a parahydrogen matrix.
Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling (DD) attenuates the destructive effect of the environmental noise, but so far it has been us ed primarily in the context of quantum memories. Here, we present a general scheme for combining DD with quantum logical gate operations and demonstrate its performance on the example of an electron spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time $T_{2}$.
To implement reliable quantum information processing, quantum gates have to be protected together with the qubits from decoherence. Here we demonstrate experimentally on nitrogen-vacancy system that by using continuous wave dynamical decoupling metho d, not only the coherence time is prolonged by about 20 times, but also the quantum gates is protected for the duration of controlling time. This protocol shares the merits of retaining the superiority of prolonging the coherence time and at the same time easily combining with quantum logic tasks. It is expected to be useful in task where duration of quantum controlling exceeds far beyond the dephasing time.
We demonstrate that CPMG and XYXY decoupling sequences with non-ideal $pi$ pulses can reduce dipolar interactions between spins of the same species in solids. Our simulations of pulsed electron spin resonance (ESR) experiments show that $pi$ rotation s with small ($<$~10%) imperfections refocus instantaneous diffusion. Here, the intractable N-body problem of interacting dipoles is approximated by the average evolution of a single spin in a changing mean field. These calculations agree well with experiments and do not require powerful hardware. Our results add to past attempts to explain similar phenomena in solid state nuclear magnetic resonance (NMR). Although the fundamental physics of NMR are similar to ESR, the larger linewidths in ESR and stronger dipolar interactions between electron spins compared to nuclear spins preclude drawing conclusions from NMR studies alone. For bulk spins, we also find that using XYXY results in less inflation of the deduced echo decay times as compared to decays obtained with CPMG.
We implement a two-qubit entangling M{o}lmer-S{o}rensen interaction by transporting two co-trapped $^{40}mathrm{Ca}^{+}$ ions through a stationary, bichromatic optical beam within a surface-electrode Paul trap. We describe a procedure for achieving a constant Doppler shift during the transport which uses fine temporal adjustment of the moving confinement potential. The fixed interaction duration of the ions transported through the laser beam as well as the dynamically changing ac Stark shift require alterations to the calibration procedures used for a stationary gate. We use the interaction to produce Bell states with fidelities commensurate to those of stationary gates performed in the same system. This result establishes the feasibility of actively incorporating ion transport into quantum information entangling operations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا