ترغب بنشر مسار تعليمي؟ اضغط هنا

Transitions from a Kondo-like diamagnetic insulator into a modulated ferromagnetic metal in $bm{mathrm{FeGa}_{3-y}mathrm{Ge}_y}$

114   0   0.0 ( 0 )
 نشر من قبل Yao Zhang
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One initial and essential question of magnetism is whether the magnetic properties of a material are governed by localized moments or itinerant electrons. Here we expose the case for the weakly ferromagnetic system FeGa$_{3-y}$Ge$_y$ wherein these two opposite models are reconciled, such that the magnetic susceptibility is quantitatively explained by taking into account the effects of spin-spin correlation. With the electron doping introduced by Ge substitution, the diamagnetic insulating parent compound FeGa$_3$ becomes a paramagnetic metal as early as at $ y=0.01 $, and turns into a weakly ferromagnetic metal around the quantum critical point $ y=0.15 $. Within the ferromagnetic regime of FeGa$_{3-y}$Ge$_y$, the magnetic properties are of a weakly itinerant ferromagnetic nature, located in the intermediate regime between the localized and the itinerant dominance. Our analysis implies a potential universality for all itinerant-electron ferromagnets.



قيم البحث

اقرأ أيضاً

Temperature dependent magnetization, muon spin rotation and $^{57}$Fe Mossbauer spectroscopy experiments performed on crystals of intermetallic FeGa$_{3-y}$Ge$_{y}$ ($y=0.11,0.14,0.17,0.22,0.27$, $0.29,0.32$) are reported. Whereas at $y=0.11$ even a sensitive magnetic microprobe such as $mu$SR does not detect magnetism, all other samples display weak ferromagnetism with a magnetic moment of up to 0.22 $mu_B$ per Fe atom. As a function of doping and of temperature a crossover from short range to long range magnetic order is observed, characterized by a broadly distributed spontaneous internal field. However, the $y=0.14$ and $y=0.17$ remain in the short range ordered state down to the lowest investigated temperature. The transition from short range to long range order appears to be accompanied by a change of the character of the spin fluctuations, which exhibit spin wave excitations signature in the LRO part of the phase diagram. Mossbauer spectroscopy for $y=0.27$ and 0.32 indicates that the internal field lies in the plane perpendicular to the crystallographic $c$ axis. The field distribution and its evolution with doping suggest that the details of the Fe magnetic moment formation and the consequent magnetic state are determined not only by the dopant concentration but also by the way the replacement of the Ga atoms surrounding the Fe is accomplished.
Samarium hexaboride is a topological Kondo insulator, with metallic surface states manifesting from its insulating band structure. Since the insulating bulk itself is driven by strong correlations, both the bulk and surface host compelling magnetic a nd electronic phenomena. We employed X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) at the Sm M$_{4,5}$ edges to measure surface and bulk magnetic properties of Sm$^{2+}$ and Sm$^{3+}$ within SmB$_6$. We observed anti-alignment to the applied field of the Sm$^{3+}$ magnetic dipole moment below $T = 75$ K and of the total orbital moment of samarium below 30 K. The induced Sm$^{3+}$ moment at the cleaved surface at 8 K and 6 T implies 1.5% of the total Sm as magnetized Sm$^{3+}$. The field dependence of the Sm$^{3+}$ XMCD dichorism at 8 K is diamagnetic and approximately linear. The bulk magnetization at 2 K is however driven by Sm$^{2+}$ Van Vleck susceptibility as well as 1% paramagnetic impurities with $mu_{rm Eff} = 5.2(1)~mu_{rm B}$. This indicates diamagnetic Sm$^{3+}$ is compensated within the bulk. The XAS and XMCD spectra are weakly affected by Sm vacancies and carbon doping while XAS is strongly affected by polishing.
We report the effects of electron doping on the ground state of a diamagnetic semiconductor FeGa$_{3}$ with a band gap of 0.5 eV. By means of electrical resistivity, magnetization and specific heat measurements we have found that gradual substitution of Ge for Ga in FeGa$_{3-y}$Ge$_{y}$ yields metallic conduction at a very small level of $y = 0.006$, then induces weak ferromagnetic (FM) order at $y = 0.13$ with a spontaneous moment of 0.1 $mu_{B}$/Fe and a Curie temperature $T_{C}= 3.3$ K, which continues increasing to $T_{C} = 75$ K as doping reaches $y = 0.41$. The emergence of the FM state is accompanied by quantum critical behavior as observed in the specific heat, $C/T propto -$ln$T$, and in the magnetic susceptibility, $M/B propto T^{-4/3}$. At $y= 0.09$, the specific heat divided by temperature $C/T$ reaches a large value of 70 mJ/K$^{2}$molFe, twice as large as that reported on FeSi$_{1-x}$Ge$_{x}$ for $x_{c}= 0.37$ and Fe$_{1-x}$Co$_{x}$Sb$_{2}$ for $x_{c}=0.3$ at their respective FM quantum critical points. The critical concentration $y_{c}=0.13$ in FeGa$_{3-y}$Ge$_{y}$ is quite small, despite the fact that its band gap is one order of magnitude larger than those in FeSi and FeSb$_{2}$. In contrast, no FM state emerges by substituting Co for Fe in Fe$_{1-x}$Co$_{x}$Ga$_{3}$ in the whole range $0 leq x leq 1$, although both types of substitution should dope electrons into FeGa$_{3}$. The FM instability found in FeGa$_{3-y}$Ge$_{y}$ indicates that strong electron correlations are induced by the disturbance of the Fe 3d - Ga 4p hybridization.
Within condensed-matter systems, strong electronic interactions often lead to exotic quantum phases. A recent manifestation of this is the unexpected observation of magnetic quantum oscillations and metallic thermal transport, both properties of syst ems with Fermi surfaces of itinerant quasiparticles, in the Kondo insulators SmB6 and YbB$_{12}$. To understand these phenomena, it is informative to study their evolution as the energy gap of the Kondo-Insulator state is closed by a large magnetic field. We show here that both the quantum-oscillation frequency and the cyclotron mass display a strong field dependence in the resulting high-field metallic state in $_{12}$. By tracking the Fermi-surface area, we conclude that the same quasiparticle band gives rise to the quantum oscillations in both insulating and metallic states. These data are understood most simply using a two-fluid picture where unusual quasiparticles, contributing little or nothing to charge transport, coexist with conventional fermions. In the metallic state this leads to a heavy-fermion bad metal with negligible magnetoresistance, relatively high resistivity and a very large Kadowaki-Woods ratio, underlining the exotic nature of the fermion ensemble inhabiting $_{12}$.
The physics of a junction composed of a normal metal, quantum dot and 2D topological insulator (in a quantum spin Hall state) is elucidated. It maifests a subtle combination of Kondo correlations and quantum spin Hall edge states moving on the opposi te sides of the 2D topological insulator. In a narrow strip geometry these edge states interact and a gap opens in the edge state spectrum. Consequently, Kondo screening is less effective and that affects electron transport through the junction. Specifically, when edge state coupling is strong enough, the tunneling differential conductance develops a dip at zero temperature instead of the standard zero bias Kondo peak.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا