ترغب بنشر مسار تعليمي؟ اضغط هنا

The dangerous irrelevance of string theory

249   0   0.0 ( 0 )
 نشر من قبل Eva Silverstein
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Eva Silverstein




اسأل ChatGPT حول البحث

We comment on the relation between string theory and empirical science, grounding our discussion in cosmology, a subject with increasingly precise data in which this connection operates at several levels. It is important to take into account the phenomenon of dangerous irrelevance: over long times or large field ranges, physics can become sensitive to higher scales than the input energies. This pertains in inflationary cosmology (and possibly other aspects of horizon physics). String theory also contributes to our understanding of observational constraints and search strategies at the level of low energy field theory. We illustrate this with a current example concerning a new form of non-Gaussianity generated by very massive degrees of freedom coupling to the inflaton. New constraints on such fields and couplings can be obtained from existing data, increasing our empirical knowledge of the universe. This builds in part from the development of the string landscape, which is neither random nor an abdication of science as has sometimes been suggested. {it Invited contribution to the proceedings of the conference `Why trust a theory.}



قيم البحث

اقرأ أيضاً

99 - J.F. Dufaux 2008
The presence of Kaluza-Klein particles in the universe is a potential manifestation of string theory cosmology. In general, they can be present in the high temperature bath of the early universe. In particular examples, string theory inflation often ends with brane-antibrane annihilation followed by the energy cascading through massive closed string loops to KK modes which then decay into lighter standard model particles. However, massive KK modes in the early universe may become dangerous cosmological relics if the inner manifold contains warped throat(s) with approximate isometries. In the complimentary picture, in the AdS/CFT dual gauge theory with extra symmetries, massive glueballs of various spins become the dangerous cosmological relics. The decay of these angular KK modes/glueballs, located around the tip of the throat, is caused by isometry breaking which results from gluing the throat to the compact CY manifold. We address the problem of these angular KK particles/glueballs, studying their interactions and decay channels, from the theory side, and the resulting cosmological constraints on the warped compactification parameters, from the phenomenology side. The abundance and decay time of the long-lived non-relativistic angular KK modes depend strongly on the parameters of the warped geometry, so that observational constraints rule out a significant fraction of the parameter space. In particular, the coupling of the angular KK particles can be weaker than gravitational.
We perform an extensive analysis of the statistics of axion masses and interactions in compactifications of type IIB string theory, and we show that black hole superradiance excludes some regions of Calabi-Yau moduli space. Regardless of the cosmolog ical model, a theory with an axion whose mass falls in a superradiant band can be probed by the measured properties of astrophysical black holes, unless the axion self-interaction is large enough to disrupt formation of a condensate. We study a large ensemble of compactifications on Calabi-Yau hypersurfaces, with $1 leq h^{1,1} leq 491$ closed string axions, and determine whether the superradiance conditions on the masses and self-interactions are fulfilled. The axion mass spectrum is largely determined by the Kahler parameters, for mild assumptions about the contributing instantons, and takes a nearly-universal form when $h^{1,1} gg 1$. When the Kahler moduli are taken at the tip of the stretched Kahler cone, the fraction of geometries excluded initially grows with $h^{1,1}$, to a maximum of $approx 0.5$ at $h^{1,1} approx 160$, and then falls for larger $h^{1,1}$. Further inside the Kahler cone, the superradiance constraints are far weaker, but for $h^{1,1} gg 100$ the decay constants are so small that these geometries may be in tension with astrophysical bounds, depending on the realization of the Standard Model.
We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal arXiv:0808.0706. In the model, the quintessence field is an axion whose shift symmetry is broken by the pr esence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state of Dark Energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.
We develop sequestered inflation models, where inflation occurs along flat directions in supergravity models derived from type IIB string theory. It is compactified on a ${mathbb{T}^6 over mathbb{Z}_2 times mathbb{Z}_2}$ orientifold with generalized fluxes and O3/O7-planes. At Step I, we use flux potentials which 1) satisfy tadpole cancellation conditions and 2) have supersymmetric Minkowski vacua with flat direction(s). The 7 moduli are split into heavy and massless Goldstone multiplets. At Step II we add a nilpotent multiplet and uplift the flat direction(s) of the type IIB string theory to phenomenological inflationary plateau potentials: $alpha$-attractors with 7 discrete values $3alpha = 1, 2, 3, ..., 7$. Their cosmological predictions are determined by the hyperbolic geometry inherited from string theory. The masses of the heavy fields and the volume of the extra dimensions change during inflation, but this does not affect the inflationary dynamics.
101 - Eva Silverstein 2016
These lectures provide an updated pedagogical treatment of the theoretical structure and phenomenology of some basic mechanisms for inflation, along with an overview of the structure of cosmological uplifts of holographic duality. A full treatment of the problem requires `ultraviolet completion because of the sensitivity of inflation to quantum gravity effects, including back reaction and non-adiabatic production of heavy degrees of freedom. Cosmological observations imply accelerated expansion of the late universe, and provide increasingly precise constraints and discovery potential on the amplitude and shape of primordial tensor and scalar perturbations, and some of their correlation functions. Most backgrounds of string theory have positive potential energy, with a rich but still highly constrained landscape of solutions. The theory contains novel mechanisms for inflation, some subject to significant observational tests. Although the detailed ultraviolet completion is not accessible experimentally, some of these mechanisms directly stimulate a more systematic analysis of the space of low energy theories and signatures relevant for analysis of data, which is sensitive to physics orders of magnitude above the energy scale of inflation as a result of long time evolution (dangerous irrelevance) and the substantial amount of data. Portions of these lectures appeared previously in Les Houches 2013, Post-Planck Cosmology .
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا