ترغب بنشر مسار تعليمي؟ اضغط هنا

Writing and Reading antiferromagnetic Mn$_2$Au: Neel spin-orbit torques and large anisotropic magnetoresistance

125   0   0.0 ( 0 )
 نشر من قبل Martin Jourdan
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Antiferromagnets are magnetically ordered materials which exhibit no net moment and thus are insensitive to magnetic fields. Antiferromagnetic spintronics aims to take advantage of this insensitivity for enhanced stability, while at the same time active manipulation up to the natural THz dynamic speeds of antiferromagnets is possible, thus combining exceptional storage density and ultra-fast switching. However, the active manipulation and read-out of the Neel vector (staggered moment) orientation is challenging. Recent predictions have opened up a path based on a new spin-orbit torque, which couples directly to the Neel order parameter. This Neel spin-orbit torque was first experimentally demonstrated in a pioneering work using semimetallic CuMnAs. Here we demonstrate for Mn$_2$Au, a good conductor with a high ordering temperature suitable for applications, reliable and reproducible switching using current pulses and readout by magnetoresistance measurements. The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than $simeq 6$~$%$ is reproduced by ab initio transport calculations.

قيم البحث

اقرأ أيضاً

We use textit{ab-initio} calculations to investigate spin-orbit torques (SOTs) in FeRh(001) deposited on W(100). Since FeRh undergoes a ferromagnetic-antiferromagnetic phase transition close to room temperature, we consider both phases of FeRh. In th e antiferromagnetic case we find that the effective magnetic field of the even torque is staggered and therefore ideal to induce magnetization dynamics or to switch the antiferromagnet (AFM). At the antiferromagnetic resonance the inverse SOT induces a current density, which can be determined from the SOT. In the ferromagnetic case our calculations predict both even and odd components of the SOT, which can also be used to describe the ac and dc currents induced at the ferromagnetic resonance. For comparison we compute the SOTs in the c($2times 2$) AFM state of Fe/W(001).
377 - A.A. Sapozhnik , C. Luo , H. Ryll 2018
Mn$_2$Au is an important antiferromagnetic (AF) material for spintronics applications. Due to its very high Neel temperature of about 1500 K, some of the basic properties are difficult to explore, such as the AF susceptibility and the exchange consta nts. Experimental determination of these properties is further complicated in thin films by unavoidable presence of uncompensated and quasiloose spins on antisites and at interfaces. Using x-ray magnetic circular dichroism (XMCD), we have measured the spin and orbital contribution to the susceptibility in the direction perpendicular to the in-plane magnetic moments of a Mn$_2$Au(001) film and in fields up to 8 T. By performing these measurements at a low temperature of 7 K and at room temperature, we were able to separate the loose spin contribution from the susceptibility of AF coupled spins. The value of the AF exchange constant obtained with this method for a 10 nm thick Mn$_2$Au(001) film equals to (24 $pm$ 5) meV.
280 - Yumeng Yang , Yanjun Xu , Hang Xie 2017
We demonstrate an ultrathin and semitransparent anisotropic and spin Hall magnetoresistance sensor based on NiFe/Pt heterostructure. The use of spin-orbit torque effective field for transverse biasing allows to reduce the total thickness of the senso rs down to 3 - 4 nm and thereby leading to the semitransparency. Despite the extremely simple design, the spin-orbit torque effective field biased NiFe/Pt sensor exhibits level of linearity and sensitivity comparable to those of sensors using more complex linearization schemes. In a proof-of-concept design using a full Wheatstone bridge comprising of four sensing elements, we obtained a sensitivity up to 202.9 m{Omega}/Oe, linearity error below 5%, and a detection limit down to 20 nT. The transmittance of the sensor is over 50% in the visible range.
Antiferromagnetic spintronics actively introduces new principles of magnetic memory, in which the most fundamental spin-dependent phenomena, i.e. anisotropic magnetoresistance effects, are governed by an antiferromagnet instead of a ferromagnet. A ge neral scenario of the antiferromagnetic anisotropic magnetoresistance effects mainly stems from the magnetocrystalline anisotropy related to spin-orbit coupling. Here we demonstrate magnetic field driven contour rotation of the fourfold anisotropic magnetoresistance in bare antiferromagnetic Sr2IrO4/SrTiO3 (001) thin films hosting a strong spin-orbit coupling induced Jeff=1/2 Mott state. Concurrently, an intriguing minimal in the magnetoresistance emerges. Through first principles calculations, the band-gap engineering due to rotation of the Ir isospins is revealed to be responsible for these emergent phenomena, different from the traditional scenario where relatively more conductive state was obtained usually when magnetic field was applied along the magnetic easy axis. Our findings demonstrate a new efficient route, i.e. via the novel Jeff=1/2 state, to realize controllable anisotropic magnetoresistance in antiferromagnetic materials.
Non-collinear antiferromagnets exhibits richer magneto-transport properties due to the topologically nontrivial spin structure they possess compared to conventional nonmagnetic materials, which allows us to manipulate the charge-spin conversion more freely by taking advantage of the chirality. In this work, we explore the unconventional spin orbit torque of L1$_2$-ordered Mn$_3$Pt with a triangular spin structure. We observed an unconventional spin orbit torque along the $mathbf{x}$-direction for the (001)-oriented L1$_2$ Mn$_3$Pt, and found that it has a unique sign reversal behavior relative to the crystalline orientation. This generation of unconventional spin orbit torque for L1$_2$-ordered Mn$_3$Pt can be interpreted as stemming from the magnetic spin Hall effect. This report help clarify the correlation between the topologically nontrivial spin structure and charge-spin conversion in non-collinear antiferromagnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا