ترغب بنشر مسار تعليمي؟ اضغط هنا

Detecting singular weak-dissipation limit for flutter onset in reversible systems

92   0   0.0 ( 0 )
 نشر من قبل Oleg Kirillov N
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A `flutter machine is introduced for the investigation of a singular interface between the classical and reversible Hopf bifurcations that is theoretically predicted to be generic in nonconservative reversible systems with vanishing dissipation. In particular, such a singular interface exists for the Pfluger viscoelastic column moving in a resistive medium, which is proven by means of the perturbation theory of multiple eigenvalues with the Jordan block. The laboratory setup, consisting of a cantilevered viscoelastic rod loaded by a positional force with non-zero curl produced by dry friction, demonstrates high sensitivity of the classical Hopf bifurcation onset {to the ratio between} the weak air drag and Kelvin-Voigt damping in the Pfluger column. Thus, the Whitney umbrella singularity is experimentally confirmed, responsible for discontinuities accompanying dissipation-induced instabilities in a broad range of physical contexts.



قيم البحث

اقرأ أيضاً

This work demonstrates preliminary results on energy harvesting from a linearly stable flutter-type system with circulatory friction forces. Harmonic external forcing is applied to study the energy flow in the steady sliding configuration. In certain parameter ranges negative excitation work is observed where the external forcing allows to pull part of the friction energy out of the system and thus makes energy harvesting possible. Studies reveal that this behavior is largely independent of the flutter point and thus that it is primarily controlled by the excitation. Contrary to existing energy harvesting approaches for such systems, this approach uses external forcing in the linearly stable regime of the oscillator which allows to control vibrations and harvest energy on demand.
An approximate solution is presented for simple harmonic motion in the presence of damping by a force which is a general power-law function of the velocity. The approximation is shown to be quite robust, allowing for a simple way to investigate ampli tude decay in the presence of general types of weak, nonlinear damping.
This work is devoted to the Keldysh model of flutter suppression and rigorous approaches to its analysis. To solve the stabilization problem in the Keldysh model we use an analog of direct Lyapunov method for differential inclusions. The results obta ined here are compared with the results of Keldysh obtained by the method of harmonic balance (describing function method), which is an approximate method for analyzing the existence of periodic solutions. The limitations of the use of describing function method for the study of systems with dry friction and stationary segment are demonstrated.
Electronic transport at finite voltages in free-standing gold atomic chains of up to 7 atoms in length is studied at low temperatures using a scanning tunneling microscope (STM). The conductance vs voltage curves show that transport in these single-m ode ballistic atomic wires is non-dissipative up to a finite voltage threshold of the order of several mV. The onset of dissipation and resistance within the wire corresponds to the excitation of the atomic vibrations by the electrons traversing the wire and is very sensitive to strain.
The nature of dark matter is still an open problem. The simplest assumption is that gravity is the only force coupled certainly to dark matter and thus the micro black holes could be a viable candidate. We investigated the possibility of direct detec tion of micro black holes with masses around and upward the Planck scale (10$^{-5}$ g), ensuring classical gravitational treatment of these objects in the next generation of huge LAr detectors. We show that the signals (ionization and scintillation) produced in LAr enable the discrimination between micro black holes or other particles. It is expected that the trajectories of these micro black holes will appear as crossing the whole active medium, in any direction, producing uniform ionization and scintillation on all the path.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا