ﻻ يوجد ملخص باللغة العربية
Non-thermal photons deriving from radiative transitions among the internal ladder of atoms and molecules are an important source of photons in addition to thermal and stellar sources in many astrophysical environments. In the present work the calculation of reaction rates for the direct photodissociation of some molecules relevant in early Universe chemistry is presented; in particular, the calculations include non-thermal photons deriving from the recombination of primordial hydrogen and helium atoms for the cases of H2, HD and HeH+. New effects on the fractional abundances of chemical species are investigated and the fits for the HeH+ photodissociation rates by thermal photons are provided.
We have detected new HD absorption systems at high redshifts, z_abs=2.626 and z_abs=1.777, identified in the spectra of the quasars J0812+3208 and Q1331+170, respectively. Each of these systems consists of two subsystems. The HD column densities have
Molecular hydrogen (H2) is the main constituent of the gas in the planet-forming disks that surround many PMS stars. H2 can be incorporated in the atmosphere of the giant planets. HD has been detected in a few disks and can be considered the most rel
Aims. Photodissociation by UV light is an important destruction mechanism for CO in many astrophysical environments, ranging from interstellar clouds to protoplanetary disks. The aim of this work is to gain a better understanding of the depth depende
Deuterated species are unique and powerful tools in astronomy since they can probe the physical conditions, chemistry, and ionization level of various astrophysical media. Recent observations of several deuterated species along with some of their spi
We study the induced primordial gravitational waves (GW) coming from the effect of scalar perturbation on the tensor perturbation at the second order of cosmological perturbation theory. We use the evolution of the standard model degrees of freedom w