ترغب بنشر مسار تعليمي؟ اضغط هنا

A Mention-Ranking Model for Abstract Anaphora Resolution

81   0   0.0 ( 0 )
 نشر من قبل Ana Marasovi\\'c
 تاريخ النشر 2017
والبحث باللغة English




اسأل ChatGPT حول البحث

Resolving abstract anaphora is an important, but difficult task for text understanding. Yet, with recent advances in representation learning this task becomes a more tangible aim. A central property of abstract anaphora is that it establishes a relation between the anaphor embedded in the anaphoric sentence and its (typically non-nominal) antecedent. We propose a mention-ranking model that learns how abstract anaphors relate to their antecedents with an LSTM-Siamese Net. We overcome the lack of training data by generating artificial anaphoric sentence--antecedent pairs. Our model outperforms state-of-the-art results on shell noun resolution. We also report first benchmark results on an abstract anaphora subset of the ARRAU corpus. This corpus presents a greater challenge due to a mixture of nominal and pronominal anaphors and a greater range of confounders. We found model variants that outperform the baselines for nominal anaphors, without training on individual anaphor data, but still lag behind for pronominal anaphors. Our model selects syntactically plausible candidates and -- if disregarding syntax -- discriminates candidates using deeper features.



قيم البحث

اقرأ أيضاً

Anaphora resolution (coreference) systems designed for the CONLL 2012 dataset typically cannot handle key aspects of the full anaphora resolution task such as the identification of singletons and of certain types of non-referring expressions (e.g., e xpletives), as these aspects are not annotated in that corpus. However, the recently released dataset for the CRAC 2018 Shared Task can now be used for that purpose. In this paper, we introduce an architecture to simultaneously identify non-referring expressions (including expletives, predicative s, and other types) and build coreference chains, including singletons. Our cluster-ranking system uses an attention mechanism to determine the relative importance of the mentions in the same cluster. Additional classifiers are used to identify singletons and non-referring markables. Our contributions are as follows. First all, we report the first result on the CRAC data using system mentions; our result is 5.8% better than the shared task baseline system, which used gold mentions. Second, we demonstrate that the availability of singleton clusters and non-referring expressions can lead to substantially improved performance on non-singleton clusters as well. Third, we show that despite our model not being designed specifically for the CONLL data, it achieves a score equivalent to that of the state-of-the-art system by Kantor and Globerson (2019) on that dataset.
Masked language models (MLMs) have contributed to drastic performance improvements with regard to zero anaphora resolution (ZAR). To further improve this approach, in this study, we made two proposals. The first is a new pretraining task that trains MLMs on anaphoric relations with explicit supervision, and the second proposal is a new finetuning method that remedies a notorious issue, the pretrain-finetune discrepancy. Our experiments on Japanese ZAR demonstrated that our two proposals boost the state-of-the-art performance, and our detailed analysis provides new insights on the remaining challenges.
The state-of-the-art on basic, single-antecedent anaphora has greatly improved in recent years. Researchers have therefore started to pay more attention to more complex cases of anaphora such as split-antecedent anaphora, as in Time-Warner is conside ring a legal challenge to Telecommunications Incs plan to buy half of Showtime Networks Inc-a move that could lead to all-out war between the two powerful companies. Split-antecedent anaphora is rarer and more complex to resolve than single-antecedent anaphora; as a result, it is not annotated in many datasets designed to test coreference, and previous work on resolving this type of anaphora was carried out in unrealistic conditions that assume gold mentions and/or gold split-antecedent anaphors are available. These systems also focus on split-antecedent anaphors only. In this work, we introduce a system that resolves both single and split-antecedent anaphors, and evaluate it in a more realistic setting that uses predicted mentions. We also start addressing the question of how to evaluate single and split-antecedent anaphors together using standard coreference evaluation metrics.
Now that the performance of coreference resolvers on the simpler forms of anaphoric reference has greatly improved, more attention is devoted to more complex aspects of anaphora. One limitation of virtually all coreference resolution models is the fo cus on single-antecedent anaphors. Plural anaphors with multiple antecedents-so-called split-antecedent anaphors (as in John met Mary. They went to the movies) have not been widely studied, because they are not annotated in ONTONOTES and are relatively infrequent in other corpora. In this paper, we introduce the first model for unrestricted resolution of split-antecedent anaphors. We start with a strong baseline enhanced by BERT embeddings, and show that we can substantially improve its performance by addressing the sparsity issue. To do this, we experiment with auxiliary corpora where split-antecedent anaphors were annotated by the crowd, and with transfer learning models using element-of bridging references and single-antecedent coreference as auxiliary tasks. Evaluation on the gold annotated ARRAU corpus shows that the out best model uses a combination of three auxiliary corpora achieved F1 scores of 70% and 43.6% when evaluated in a lenient and strict setting, respectively, i.e., 11 and 21 percentage points gain when compared with our baseline.
We describe a large, high-quality benchmark for the evaluation of Mention Detection tools. The benchmark contains annotations of both named entities as well as other types of entities, annotated on different types of text, ranging from clean text tak en from Wikipedia, to noisy spoken data. The benchmark was built through a highly controlled crowd sourcing process to ensure its quality. We describe the benchmark, the process and the guidelines that were used to build it. We then demonstrate the results of a state-of-the-art system running on that benchmark.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا