ﻻ يوجد ملخص باللغة العربية
Let $pi$ be a set of primes. According to H. Wielandt, a subgroup $H$ of a finite group $X$ is called a $pi$-submaximal subgroup if there is a monomorphism $phi:Xrightarrow Y$ into a finite group $Y$ such that $X^phi$ is subnormal in $Y$ and $H^phi=Kcap X^phi$ for a $pi$-maximal subgroup $K$ of $Y$. In his talk at the well-known conference on finite groups in Santa-Cruz (USA) in 1979, Wielandt posed a series of open questions and among them the following problem: to describe the $pi$-submaximal subgroup of the minimal nonsolvable groups and to study properties of such subgroups: the pronormality, the intravariancy, the conjugacy in the automorphism group etc. In the article, for every set $pi$ of primes, we obtain a description of the $pi$-submaximal subgroup in minimal nonsolvable groups and investigate their properties, so we give a solution of Wielandts problem.
We prove that groups definable in o-minimal structures have Cartan subgroups, and only finitely many conjugacy classes of such subgroups. We also delineate with precision how these subgroups cover the ambient group, in general very largely in terms of the dimension.
In this paper, we show that all Coleman automorphisms of a finite group with self-central minimal non-trivial characteristic subgroup are inner; therefore the normalizer property holds for these groups. Using our methods we show that the holomorph an
Asymptotic properties of finitely generated subgroups of free groups, and of finite group presentations, can be considered in several fashions, depending on the way these objects are represented and on the distribution assumed on these representation
Recent results of Qu and Tuarnauceanu describe explicitly the finite p-groups which are not elementary abelian and have the property that the number of their subgroups is maximal among p-groups of a given order. We complement these results from the b
In 1933 B.~H.~Neumann constructed uncountably many subgroups of ${rm SL}_2(mathbb Z)$ which act regularly on the primitive elements of $mathbb Z^2$. As pointed out by Magnus, their images in the modular group ${rm PSL}_2(mathbb Z)cong C_3*C_2$ are ma