ﻻ يوجد ملخص باللغة العربية
In this paper, we study a novel second-order energy stable Backward Differentiation Formula (BDF) finite difference scheme for the epitaxial thin film equation with slope selection (SS). One major challenge for the higher oder in time temporal discretization is how to ensure an unconditional energy stability and an efficient numerical implementation. We propose a general framework for designing the higher order in time numerical scheme with unconditional energy stability by using the BDF method with constant coefficient stabilized terms. Based on the unconditional energy stability property, we derive an $L^infty_h (0,T; H_{h}^2)$ stability for the numerical solution and provide an optimal the convergence analysis. To deal with the 4-Laplacian solver in an $L^{2}$ gradient flow at each time step, we apply an efficient preconditioned steepest descent algorithm and preconditioned nonlinear conjugate gradient algorithm to solve the corresponding nonlinear system. Various numerical simulations are present to demonstrate the stability and efficiency of the proposed schemes and slovers.
We present a second-order ensemble method based on a blended three-step backward differentiation formula (BDF) timestepping scheme to compute an ensemble of Navier-Stokes equations. Compared with the only existing second-order ensemble method that co
In this paper, we develop a provably energy stable and conservative discontinuous spectral element method for the shifted wave equation in second order form. The proposed method combines the advantages and central ideas of very successful numerical t
A time-fractional Allen-Cahn equation with volume constraint is first proposed by introducing a nonlocal time-dependent Lagrange multiplier. Adaptive linear second-order energy stable schemes are developed for the proposed model by combining invarian
In this paper, we discuss the nonlinear stability and convergence of a fully discrete Fourier pseudospectral method coupled with a specially designed second order time-stepping for the numerical solution of the good Boussinesq equation. Our analysis
In this paper, two finite difference numerical schemes are proposed and analyzed for the droplet liquid film model, with a singular Leonard-Jones energy potential involved. Both first and second order accurate temporal algorithms are considered. In t