ترغب بنشر مسار تعليمي؟ اضغط هنا

iPTF15eqv: Multi-wavelength Expose of a Peculiar Calcium-rich Transient

90   0   0.0 ( 0 )
 نشر من قبل Dan Milisavljevic
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The progenitor systems of the class of Ca-rich transients is a key open issue in time domain astrophysics. These intriguing objects exhibit unusually strong calcium line emissions months after explosion, fall within an intermediate luminosity range, are often found at large projected distances from their host galaxies, and may play a vital role in enriching galaxies and the intergalactic medium. Here we present multi-wavelength observations of iPTF15eqv in NGC 3430, which exhibits a unique combination of properties that bridge those observed in Ca-rich transients and Type Ib/c supernovae. iPTF15eqv has among the highest [Ca II]/[O I] emission line ratios observed to date, yet is more luminous and decays more slowly than other Ca-rich transients. Optical and near-infrared photometry and spectroscopy reveal signatures consistent with the supernova explosion of a < 10 solar mass star that was stripped of its H-rich envelope via binary interaction. Distinct chemical abundances and ejecta kinematics suggest that the core collapse occurred through electron capture processes. Deep limits on possible radio emission made with the Jansky Very Large Array imply a clean environment ($n <$ 0.1 cm$^{-3}$) within a radius of $sim 10^{17}$ cm. Chandra X-ray Observatory observations rule out alternative scenarios involving tidal disruption of a white dwarf by a black hole, for masses > 100 solar masses). Our results challenge the notion that spectroscopically classified Ca-rich transients only originate from white dwarf progenitor systems, complicate the view that they are all associated with large ejection velocities, and indicate that their chemical abundances may vary widely between events.

قيم البحث

اقرأ أيضاً

70 - J.D. Linford 2017
We present multi-wavelength observations of the unusual nova V1535 Sco throughout its outburst in 2015. Early radio observations were consistent with synchrotron emission, and early X-ray observations revealed the presence of high-energy (>1 keV) pho tons. These indicated that strong shocks were present during the first ~2 weeks of the novas evolution. The radio spectral energy distribution was consistent with thermal emission from week 2 to week 6. Starting in week 7, the radio emission again showed evidence of synchrotron emission and there was an increase in X-ray emission, indicating a second shock event. The optical spectra show evidence for at least two separate outflows, with the faster outflow possibly having a bipolar morphology. The optical and near infrared light curves and the X-ray measurements of the hydrogen column density indicated that the companion star is likely a K giant.
The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the $sim 200$ d span over which multi-band data are available. In one of them, the V and J bands appear to lead the $gamma$-ray and X-ray bands by a few days; in the other, all variations are simultaneous.
We present $textit{Hubble Space Telescope}$ imaging of the Calcium-rich supernova (SN) 2019ehk at 276 - 389 days after explosion. These observations represent the latest photometric measurements of a Calcium-rich transient to date and allows for the first opportunity to analyze the late-time evolution of an object in this observational SN class. We find that the late-time bolometric light curve of SN 2019ehk can be described predominantly through the radioactive decay of ${}^{56}textrm{Co}$ for which we derive a mass of $M({}^{56}textrm{Co}) = (2.8 pm 0.1) times 10^{-2}$$rm{M}_odot$. Furthermore, the rate of decline in bolometric luminosity requires the leakage of $gamma$-rays on timescale $t_{gamma} = 53.9 pm 1.30$ days, but we find no statistical evidence for incomplete positron trapping in the SN ejecta. While our observations cannot constrain the exact masses of other radioactive isotopes synthesized in SN 2019ehk, we estimate a mass ratio limit of $M({}^{57}textrm{Co}) / M({}^{56}textrm{Co}) leq 0.030$. This limit is consistent with the explosive nucleosynthesis produced in the merger of low-mass white dwarfs, which is one of the favored progenitor scenarios in early-time studies of SN 2019ehk.
We present observations and modeling of SN 2016hnk, a Ca-rich supernova (SN) that is consistent with being the result of a He-shell double-detonation explosion of a C/O white dwarf. We find that SN 2016hnk is intrinsically red relative to typical the rmonuclear SNe and has a relatively low peak luminosity ($M_B = -15.4$ mag), setting it apart from low-luminosity Type Ia supernovae (SNe Ia). SN 2016hnk has a fast-rising light curve that is consistent with other Ca-rich transients ($t_r = 15$ d). We determine that SN 2016hnk produced $0.03 pm 0.01 M_{odot}$ of ${}^{56}textrm{Ni}$ and $0.9 pm 0.3 M_{odot}$ of ejecta. The photospheric spectra show strong, high-velocity Ca II absorption and significant line blanketing at $lambda < 5000$ Angstroms, making it distinct from typical (SN 2005E-like) Ca-rich SNe. SN 2016hnk is remarkably similar to SN 2018byg, which was modeled as a He-shell double-detonation explosion. We demonstrate that the spectra and light curves of SN 2016hnk are well modeled by the detonation of a $0.02 M_{odot}$ helium shell on the surface of a $0.85 M_{odot}$ C/O white dwarf. This analysis highlights the second observed case of a He-shell double-detonation and suggests a specific thermonuclear explosion that is physically distinct from SNe that are defined simply by their low luminosities and strong [Ca II] emission.
We present optical and near-infrared observations of SN~Ib~2019ehk. We show that it evolved to a Ca-rich transient according to its spectral properties and evolution in late phases. It, however, shows a few distinguishable properties from the canonic al Ca-rich transients: a short-duration first peak in the light curve, high peak luminosity, and association with a star-forming environment. Indeed, some of these features are shared with iPTF14gqr and iPTF16hgs, which are candidates for a special class of core-collapse SNe (CCSNe): the so-called ultra-stripped envelope SNe, i.e., a relatively low-mass He (or C+O) star explosion in a binary as a precursor of double neutron star binaries. The estimated ejecta mass ($0.43 M_odot$) and explosion energy ($1.7 times 10^{50} $~erg) are consistent with this scenario. The analysis of the first peak suggests existence of dense circumstellar material in the vicinity of the progenitor, implying a CCSN origin. Based on these analyses, we suggest SN 2019ehk is another candidate for an ultra-stripped envelope SN. These ultra-stripped envelope SN candidates seem to form a subpopulation among Ca-rich transients, associated with young population. We propose that the key to distinguishing this population is the early first peak in their light curves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا