ترغب بنشر مسار تعليمي؟ اضغط هنا

The Vapor-Solid-Solid Growth of Ge Nanowires on Ge (110) by Molecular Beam Epitaxy

133   0   0.0 ( 0 )
 نشر من قبل Zhongyunshen Zhu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate Au-assisted vapor-solid-solid (VSS) growth of Ge nanowires (NWs) by molecular beam epitaxy (MBE) at 220 {deg}C, which is compatible with the temperature window for Si-based integrated circuit. Low temperature grown Ge NWs hold a smaller size, similar uniformity and better fit with Au tips in diameter, in contrast to Ge NWs grown at around or above the eutectic temperature of Au-Ge alloy in the vapor-liquid-solid (VLS) growth. Three growth orientations were observed on Ge (110) by the VSS growth at 220 {deg}C, differing from only one growth direction of Ge NWs by the VLS growth at a high temperature. The evolution of NWs dimension and morphology from the VLS growth to the VSS growth is qualitatively explained via analyzing the mechanism of the two growth modes.

قيم البحث

اقرأ أيضاً

We have investigated the growth of Pt on Ge(110) using scanning tunneling microscopy and spectroscopy. The deposition of several monolayers of Pt on Ge(110) followed by annealing at 1100 K results in the formation of three-dimensional metallic Pt-Ge nanocrystals. The outermost layer of these crystals exhibits a honeycomb structure. The honeycomb structure is composed of two hexagonal sub-lattices that are displaced vertically by 0.2 {AA} with respect to each other. The nearest-neighbor distance of the atoms in the honeycomb lattice is 2.5${pm}$0.1 {AA}, i.e. very close to the predicted nearest-neighbor distance in germanene (2.4 {AA}). Scanning tunneling spectroscopy reveals that the atomic layer underneath the honeycomb layer is more metallic than the honeycomb layer itself. These observations are in line with a model recently proposed for metal di-(silicides/)germanides: a hexagonal crystal with metal layers separated by semiconductor layers with a honeycomb lattice. Based on our observations we propose that the outermost layer of the Ge2Pt nanocrystal is a germanene layer.
The first waveguide coupled phosphide-based UTC photodiodes grown by Solid Source Molecular Beam Epitaxy (SSMBE) are reported in this paper. Metal Organic Vapour Phase Epitaxy (MOVPE) and Gas Source MBE (GSMBE) have long been the predominant growth t echniques for the production of high quality InGaAsP materials. The use of SSMBE overcomes the major issue associated with the unintentional diffusion of zinc in MOVPE and gives the benefit of the superior control provided by MBE growth techniques without the costs and the risks of handling toxic gases of GSMBE. The UTC epitaxial structure contains a 300 nm n-InP collection layer and a 300 nm n++-InGaAsP waveguide layer. UTC-PDs integrated with Coplanar Waveguides (CPW) exhibit 3 dB bandwidth greater than 65 GHz and output RF power of 1.1 dBm at 100 GHz. We also demonstrate accurate prediction of the absolute level of power radiated by our antenna integrated UTCs, between 200 GHz and 260 GHz, using 3d full-wave modelling and taking the UTC-to-antenna impedance match into account. Further, we present the first optical 3d full-wave modelling of waveguide UTCs, which provides a detailed insight into the coupling between a lensed optical fibre and the UTC chip.
In a combined experimental and theoretical study, we investigate the influence of the material source arrangement in a molecular beam epitaxy (MBE) system on the growth of nanowire (NW) core-shell structures. In particular, we study the shell growth of GaN around GaN template NWs under the boundary condition that Ga and N do not impinge on a given sidewall facet at the same time. Our experiments with different V/III ratios and substrate temperatures show that obtaining shells with homogeneous thickness along the whole NW length is not straightforward. Analyzing in detail the shell morphology with and without substrate rotation, we find that the different azimuthal angles of the sources have a major impact on the Ga adatom kinetics and the final shell morphology. On the basis of these experimental results, we develop a diffusion model which takes into account different NW facets and the substrate. The model allows to describe well the experimental shell profiles and predicts that homogeneous shell growth can be achieved if the Ga and N source are arranged next to each other or for very high rotation speeds. Moreover, the modeling reveals that the growth on a given side facet can be categorized within one rotation in four different phases: the Ga wetting phase, the metal-rich growth phase, the N-rich growth phase, and the dissociation phase. The striking difference to growth processes on planar samples is that, in our case, diffusion takes place between different regions, i.e. the sidewall vs. the top facet and substrate, out of which on one N impinges not continuously, resulting in complex gradients in chemical potential that are modulated in time by substrate rotation. The comprehensiveness of our model provides a deep understanding of diffusion processes and the resulting adatom concentration, and could be applied to other 3D structures and material systems
With ZnTe as an example, we use two different methods to unravel the characteristics of the growth of nanowires by gold-catalyzed molecular beam epitaxy at low temperature. In the first approach, CdTe insertions have been used as markers, and the nan owires have been characterized by scanning transmission electron microscopy, including geometrical phase analysis, and energy dispersive electron spectrometry; the second approach uses scanning electron microscopy and the statistics of the relationship between the length of the tapered nanowires and their base diameter. Axial and radial growth are quantified using a diffusion-limited model adapted to the growth conditions; analytical expressions describe well the relationship between the NW length and the total molecular flux (taking into account the orientation of the effusion cells), and the catalyst-nanowire contact area. A long incubation time is observed. This analysis allows us to assess the evolution of the diffusion lengths on the substrate and along the nanowire sidewalls, as a function of temperature and deviation from stoichiometric flux.
A seemingly simple oxide with a rutile structure, RuO2 has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthe sis of RuO2 films but, unfortunately, utilizing atomically-controlled deposition techniques like molecular beam epitaxy (MBE) has been difficult due to the ultra-low vapor pressure and low oxidation potential of Ru. Here, we demonstrate the growth of epitaxial, single-crystalline RuO2 films on different substrate orientations using the novel solid-source metal-organic (MO) MBE. This approach circumvents these issues by supplying Ru using a pre-oxidized solid metal-organic precursor containing Ru. High-quality epitaxial RuO2 films with bulk-like room-temperature resistivity of 55 micro-ohm-cm were obtained at a substrate temperature as low as 300 C. By combining X-ray diffraction, transmission electron microscopy, and electrical measurements, we discuss the effect of substrate temperature, orientation, film thickness, and strain on the structure and electrical properties of these films. Our results illustrating the use of novel solid-source MOMBE approach paves the way to the atomic-layer controlled synthesis of complex oxides of stubborn metals, which are not only difficult to evaporate but also hard to oxidize.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا