ترغب بنشر مسار تعليمي؟ اضغط هنا

High- and low-energy constraints on top-Higgs couplings

66   0   0.0 ( 0 )
 نشر من قبل Wouter Dekens
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English
 تأليف W. Dekens




اسأل ChatGPT حول البحث

We study the five chirality-flipping interactions that appear in the top-Higgs sector at leading order in the standard model effective field theory. We consider constraints from collider observables, flavor physics, and electric-dipole-moment experiments. This analysis results in very competitive constraints from indirect observables when one considers a single coupling at a time. In addition, we discuss how these limits are affected in scenarios in which multiple top-Higgs interactions are generated at the scale of new physics.


قيم البحث

اقرأ أيضاً

We investigate from first principles the introduction of isospin-1 vector and axial-vector fields into the nonlinear sigma model. Chiral symmetry is nonlinearly realised and spin-1 fields are assumed to transform homogeneously under chiral rotations. By requiring the Hamiltonian of the theory to be bounded from below we find inequalities relating three- and four-point meson couplings. This leads to a low-energy phenomenological Lagrangian for the nonanomalous sector of $pirho a_1$ strong interactions.
66 - M.M. Muhlleitner 2001
In order to verify the Higgs mechanism experimentally, the Higgs self-couplings have to be probed. These couplings allow the reconstruction of the characteristic Higgs potential responsible for the electroweak symmetry breaking. The couplings are acc essible in a variety of multiple Higgs production processes. The theoretical analysis including the most relevant channels for the production of neutral Higgs boson pairs at high-energy and high-luminosity $e^+e^-$ linear colliders will be presented in this note.
The $h(125)$ boson, discovered only in 2012, is lower than the top quark in mass, hence $t to ch$ search commenced immediately thereafter, with current limits at the per mille level and improving. As the $t to ch$ rate vanishes with the $h$-$H$ mixin g angle $cosgamma to 0$, we briefly review the collider probes of the top changing $tcH/tcA$ coupling $rho_{tc}$ of the exotic $CP$-even/odd Higgs bosons $H/A$. Together with an extra top conserving $ttH/ttA$ coupling $rho_{tt}$, one has an enhanced $cbH^+$ coupling alongside the familiar $tbH^+$ coupling, where $H^+$ is the charged Higgs boson. The main processes we advocate are $cg to tH/A to ttbar c,; ttbar t$ (same-sign top and triple-top), and $cg to bH^+ to btbar b$. We also discuss some related processes such as $cg to thh$, $tZH$ that depend on $cosgamma$ being nonzero, comment briefly on $gg to H/A to tbar t, tbar c$ resonant production, and touch upon the $rho_{tu}$ coupling.
We study the off-shell production of the Higgs boson at the LHC to probe Higgs physics at higher energy scales utilizing the process $g g rightarrow h^{*} rightarrow ZZ$. We focus on the energy scale dependence of the off-shell Higgs propagation, and of the top quark Yukawa coupling, $y_t (Q^2)$. Extending our recent study in arXiv:1710.02149, we first discuss threshold effects in the Higgs propagator due to the existence of new states, such as a gauge singlet scalar portal, and a possible continuum of states in a conformal limit, both of which would be difficult to discover in other traditional searches. We then examine the modification of $y_t (Q^2)$ from its Standard Model (SM) prediction in terms of the renormalization group running of the top Yukawa, which could be significant in the presence of large flat extra-dimensions. Finally, we explore possible strongly coupled new physics in the top-Higgs sector that can lead to the appearance of a non-local $Q^2$-dependent form factor in the effective top-Higgs vertex. We find that considerable deviations compared to the SM prediction in the invariant mass distribution of the $Z$-boson pair can be conceivable, and may be probed at a $2sigma$-level at the high-luminosity 14 TeV HL-LHC for a new physics scale up to $mathcal{O}(1 {~rm TeV})$, and at the upgraded 27 TeV HE-LHC for a scale up to $mathcal{O}(3 {~rm TeV})$. For a few favorable scenarios, $5sigma$-level observation may be possible at the HE-LHC for a scale of about $mathcal{O}(1 {~rm TeV})$.
We consider electroweak symmetry breaking by a certain class of non-local Higgs sectors. Extending previous studies employing the Mandelstam condition, a straight Wilson line is used to make the Higgs action gauge invariant. We show the unitarization of vector-boson scattering for a wide class of non-local actions, but find that the Wilson-line model leads to tree-level corrections to electroweak precision observables, which restrict the parameter space of the model. We also find that Unhiggs models cannot address the hierarchy problem, once the parameters are expressed in terms of low-energy observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا