ﻻ يوجد ملخص باللغة العربية
We find the complete phase diagram of a generalised XY model that includes half-vortices. The model possesses superfluid, pair-superfluid and disordered phases, separated by Kosterlitz-Thouless (KT) transitions for both the half-vortices and ordinary vortices, as well as an Ising-type transition. There also occurs an unusual deconfining phase transition, where the disordered to superfluid transition is of Ising rather than KT type. We show by analytical arguments and extensive numerical simulations that there is a point in the phase diagram where the KT transition line meets the deconfining Ising phase transition. We find that the latter extends into the disordered phase not as a phase transition, but rather solely as a deconfinement transition. It is best understood in the dual height model, where on one side of the transition height steps are bound into pairs while on the other they are unbound. We also extend the phase diagram of the dual model, finding both O(2) loop model and antiferromagnetic Ising transitions.
We obtain the steady-state phase diagram of a transverse field XY spin chain coupled at its ends to magnetic reservoirs held at different magnetic potentials. In the long-time limit, the magnetization bias across the system generates a current-carryi
In this paper, we apply machine learning methods to study phase transitions in certain statistical mechanical models on the two dimensional lattices, whose transitions involve non-local or topological properties, including site and bond percolations,
We study the finite-temperature superfluid transition in a modified two-dimensional (2D) XY model with power-law distributed scratch-like bond disorder. As its exponent decreases, the disorder grows stronger and the mechanism driving the superfluid t
We investigate the coarsening dynamics in the two-dimensional Hamiltonian XY model on a square lattice, beginning with a random state with a specified potential energy and zero kinetic energy. Coarsening of the system proceeds via an increase in the
We consider quantum Heisenberg ferro- and antiferromagnets on the square lattice with exchange anisotropy of easy-plane or easy-axis type. The thermodynamics and the critical behaviour of the models are studied by the pure-quantum self-consistent har