ترغب بنشر مسار تعليمي؟ اضغط هنا

The validity of 21 cm spin temperature as a kinetic temperature indicator in atomic and molecular gas

44   0   0.0 ( 0 )
 نشر من قبل Gargi Shaw
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gas kinetic temperature ($T_K$) of various interstellar environments is often inferred from observations that can deduce level populations of atoms, ions, or molecules using spectral line observations; H I 21 cm is perhaps the most widely used with a long history. Usually the H I 21 cm line is assumed to be in thermal equilibrium and the populations are given by the Boltzmann distribution. A variety of processes, many involving Lyman alpha ($Lyalpha$), can affect the 21 cm line. Here we show how this is treated in the spectral simulation code Cloudy, and present numerical simulations of environments where this temperature indicator is used, with a detailed treatment of the physical processes that determine level populations within $H^0$. We discuss situations where this temperature indicator traces $T_K$, cases where they fail, as well as the effects of $Lyalpha$ pumping on the 21 cm spin temperature. We also show that the $Lyalpha$ excitation temperature rarely traces the gas kinetic temperature.

قيم البحث

اقرأ أيضاً

81 - M. Juvela 2011
We investigate the uncertainties affecting the temperature profiles of dense cores of interstellar clouds. In regions shielded from external ultraviolet radiation, the problem is reduced to the balance between cosmic ray heating, line cooling, and th e coupling between gas and dust. We show that variations in the gas phase abundances, the grain size distribution, and the velocity field can each change the predicted core temperatures by one or two degrees. We emphasize the role of non-local radiative transfer effects that often are not taken into account, for example, when modelling the core chemistry. These include the radiative coupling between regions of different temperature and the enhanced line cooling near the cloud surface. The uncertainty of the temperature profiles does not necessarily translate to a significant error in the column density derived from observations. However, depletion processes are very temperature sensitive and a two degree difference can mean that a given molecule no longer traces the physical conditions in the core centre.
The X-ray spectra of late type stars can generally be well fitted by a two temperature component model of the corona. We fnd that the temperature of both components are strong functions of stellar age, although the temperature of the hotter plasma in the corona shows a larger scatter and is probably affected by the activity of stars, such as flares. We confirm the power-law decay of the temperature of the hot plasma, but the temperature of the cool component decays linearly with log (age).
108 - Robert Braun 2012
Galaxy disks are shown to contain a significant population of atomic clouds of 100pc linear size which are self-opaque in the 21cm transition. These objects have HI column densities as high as 10^23 and contribute to a global opacity correction facto r of 1.34+/-0.05 that applies to the integrated 21cm emission to obtain a total HI mass estimate. Opacity-corrected images of the nearest external galaxies have been used to form a robust z=0 distribution function of HI, f(N_HI,X,z=0), the probability of encountering a specific HI column density per unit comoving distance. This is contrasted with previously published determinations of f(N_HI,X) at z=1 and 3. A systematic decline of moderate column density (18<log(N_HI)<21) HI is observed that corresponds to a decline in surface area of such gas by a factor of five since z=3. The number of equivalent DLA absorbers (log(N_HI)>20.3) has also declined systematically over this redshift interval by a similar amount, while the cosmological mass density in such systems has declined by only a factor of two to its current, opacity corrected value of Omega_HI^DLA(z=0) = 5.4 +/- 0.9x10^-4. We utilize the tight, but strongly non-linear dependence of 21cm absorption opacity on column density at z=0 to transform our HI images into ones of 21cm absorption opacity. These images are used to calculate distribution and pathlength functions of integrated 21cm opacity. The incidence of deep 21cm absorption systems is predicted to show very little evolution with redshift, while that of faint absorbers should decline by a factor of five between z=3 and the present. We explicitly consider the effects of HI absorption against background sources that are extended relative to the 100pc intervening absorber size scale. Future surveys of 21cm absorption will require very high angular resolution, of about 15mas, for their unambiguous interpretation. (Abridged.)
95 - A. P. Mosk 2005
We show that thermalization of the motion of atoms at negative temperature is possible in an optical lattice, for conditions that are feasible in current experiments. We present a method for reversibly inverting the temperature of a trapped gas. More over, a negative-temperature ensemble can be cooled, reducing abs(T), by evaporation of the lowest-energy particles. This enables the attainment of the Bose-Einstein condensation phase transition at negative temperature.
For a general understanding of the physics involved in the star formation process, measurements of physical parameters such as temperature and density are indispensable. The chemical and physical properties of dense clumps of molecular clouds are str ongly affected by the kinetic temperature. Therefore, this parameter is essential for a better understanding of the interstellar medium. Formaldehyde, a molecule which traces the entire dense molecular gas, appears to be the most reliable tracer to directly measure the gas kinetic temperature.We aim to determine the kinetic temperature with spectral lines from formaldehyde and to compare the results with those obtained from ammonia lines for a large number of massive clumps.Three 218 GHz transitions (JKAKC=303-202, 322-221, and 321-220) of para-H2CO were observed with the 15m James Clerk Maxwell Telescope (JCMT) toward 30 massive clumps of the Galactic disk at various stages of high-mass star formation. Using the RADEX non-LTE model, we derive the gas kinetic temperature modeling the measured para-H2CO 322-221/303-202and 321-220/303-202 ratios. The gas kinetic temperatures derived from the para-H2CO (321-220/303-202) line ratios range from 30 to 61 K with an average of 46 K. A comparison of kinetic temperature derived from para-H2CO, NH3, and the dust emission indicates that in many cases para-H2CO traces a similar kinetic temperature to the NH3 (2,2)/(1,1) transitions and the dust associated with the HII regions. Distinctly higher temperatures are probed by para-H2CO in the clumps associated with outflows/shocks. Kinetic temperatures obtained from para-H2CO trace turbulence to a higher degree than NH3 (2,2)/(1,1) in the massive clumps. The non-thermal velocity dispersions of para-H2CO lines are positively correlated with the gas kinetic temperature. The massive clumps are significantly influenced by supersonic non-thermal motions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا