ترغب بنشر مسار تعليمي؟ اضغط هنا

Sign-changing self-similar solutions of the nonlinear heat equation with positive initial value

177   0   0.0 ( 0 )
 نشر من قبل Thierry Cazenave
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the nonlinear heat equation $u_t - Delta u = |u|^alpha u$ on ${mathbb R}^N$, where $alpha >0$ and $Nge 1$. We prove that in the range $0 < alpha <frac {4} {N-2}$, for every $mu >0$, there exist infinitely many sign-changing, self-similar solutions to the Cauchy problem with initial value $u_0 (x)= mu |x|^{-frac {2} {alpha }}$. The construction is based on the analysis of the related inverted profile equation. In particular, we construct (sign-changing) self-similar solutions for positive initial values for which it is known that there does not exist any local, nonnegative solution.



قيم البحث

اقرأ أيضاً

We study the existence of sign-changing solutions to the nonlinear heat equation $partial _t u = Delta u + |u|^alpha u$ on ${mathbb R}^N $, $Nge 3$, with $frac {2} {N-2} < alpha <alpha _0$, where $alpha _0=frac {4} {N-4+2sqrt{ N-1 } }in (frac {2} {N- 2}, frac {4} {N-2})$, which are singular at $x=0$ on an interval of time. In particular, for certain $mu >0$ that can be arbitrarily large, we prove that for any $u_0 in mathrm{L} ^infty _{mathrm{loc}} ({mathbb R}^N setminus { 0 }) $ which is bounded at infinity and equals $mu |x|^{- frac {2} {alpha }}$ in a neighborhood of $0$, there exists a local (in time) solution $u$ of the nonlinear heat equation with initial value $u_0$, which is sign-changing, bounded at infinity and has the singularity $beta |x|^{- frac {2} {alpha }}$ at the origin in the sense that for $t>0$, $ |x|^{frac {2} {alpha }} u(t,x) to beta $ as $ |x| to 0$, where $beta = frac {2} {alpha } ( N -2 - frac {2} {alpha } ) $. These solutions in general are neither stationary nor self-similar.
We show the existence of self-similar solutions for the Muskat equation. These solutions are parameterized by $0<s ll 1$; they are exact corners of slope $s$ at $t=0$ and become smooth in $x$ for $t>0$.
The diffusion equation is a universal and standard textbook model for partial differential equations (PDEs). In this work, we revisit its solutions, seeking, in particular, self-similar profiles. This problem connects to the classical theory of speci al functions and, more specifically, to the Hermite as well as the Kummer hypergeometric functions. Reconstructing the solution of the original diffusion model from novel self-similar solutions of the associated self-similar PDE, we infer that the $t^{-1/2}$ decay law of the diffusion amplitude is {it not necessary}. In particular, it is possible to engineer setups of {it both} the Cauchy problem and the initial-boundary value problem in which the solution decays at a {it different rate}. Nevertheless, we observe that the $t^{-1/2}$ rate corresponds to the dominant decay mode among integrable initial data, i.e., ones corresponding to finite mass. Hence, unless the projection to such a mode is eliminated, generically this decay will be the slowest one observed. In initial-boundary value problems, an additional issue that arises is whether the boundary data are textit{consonant} with the initial data; namely, whether the boundary data agree at all times with the solution of the Cauchy problem associated with the same initial data, when this solution is evaluated at the boundary of the domain. In that case, the power law dictated by the solution of the Cauchy problem will be selected. On the other hand, in the non-consonant cases a decomposition of the problem into a self-similar and a non-self-similar one is seen to be beneficial in obtaining a systematic understanding of the resulting solution.
In this article we discuss the maximum principle for the linear equation and the sign changing solutions of the semilinear equation with the Higgs potential. Numerical simulations indicate that the bubbles for the semilinear Klein-Gordon equation in the de Sitter spacetime are created and apparently exist for all times.
166 - Hattab Mouajria , Slim Tayachi , 2019
In this paper we study global well-posedness and long time asymptotic behavior of solutions to the nonlinear heat equation with absorption, $ u_t - Delta u + |u|^alpha u =0$, where $u=u(t,x)in {mathbb R}, $ $(t,x)in (0,infty)times{mathbb R}^N$ and $a lpha>0$. We focus particularly on highly singular initial values which are antisymmetric with respect to the variables $x_1,; x_2,; cdots,; x_m$ for some $min {1,2, cdots, N}$, such as $u_0 = (-1)^mpartial_1partial_2 cdots partial_m|cdot|^{-gamma} in {{mathcal S}({mathbb R}^N)}$, $0 < gamma < N$. In fact, we show global well-posedness for initial data bounded in an appropriate sense by $u_0$, for any $alpha>0$. Our approach is to study well-posedness and large time behavior on sectorial domains of the form $Omega_m = {x in {{mathbb R}^N} : x_1, cdots, x_m > 0}$, and then to extend the results by reflection to solutions on ${{mathbb R}^N}$ which are antisymmetric. We show that the large time behavior depends on the relationship between $alpha$ and $2/(gamma+m)$, and we consider all three cases, $alpha$ equal to, greater than, and less than $2/(gamma+m)$. Our results include, among others, new examples of self-similar and asymptotically self-similar solutions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا