ﻻ يوجد ملخص باللغة العربية
We consider the nonlinear heat equation $u_t - Delta u = |u|^alpha u$ on ${mathbb R}^N$, where $alpha >0$ and $Nge 1$. We prove that in the range $0 < alpha <frac {4} {N-2}$, for every $mu >0$, there exist infinitely many sign-changing, self-similar solutions to the Cauchy problem with initial value $u_0 (x)= mu |x|^{-frac {2} {alpha }}$. The construction is based on the analysis of the related inverted profile equation. In particular, we construct (sign-changing) self-similar solutions for positive initial values for which it is known that there does not exist any local, nonnegative solution.
We study the existence of sign-changing solutions to the nonlinear heat equation $partial _t u = Delta u + |u|^alpha u$ on ${mathbb R}^N $, $Nge 3$, with $frac {2} {N-2} < alpha <alpha _0$, where $alpha _0=frac {4} {N-4+2sqrt{ N-1 } }in (frac {2} {N-
We show the existence of self-similar solutions for the Muskat equation. These solutions are parameterized by $0<s ll 1$; they are exact corners of slope $s$ at $t=0$ and become smooth in $x$ for $t>0$.
The diffusion equation is a universal and standard textbook model for partial differential equations (PDEs). In this work, we revisit its solutions, seeking, in particular, self-similar profiles. This problem connects to the classical theory of speci
In this article we discuss the maximum principle for the linear equation and the sign changing solutions of the semilinear equation with the Higgs potential. Numerical simulations indicate that the bubbles for the semilinear Klein-Gordon equation in
In this paper we study global well-posedness and long time asymptotic behavior of solutions to the nonlinear heat equation with absorption, $ u_t - Delta u + |u|^alpha u =0$, where $u=u(t,x)in {mathbb R}, $ $(t,x)in (0,infty)times{mathbb R}^N$ and $a