ترغب بنشر مسار تعليمي؟ اضغط هنا

Self-consistent modelling of our Galaxy with Gaia data

49   0   0.0 ( 0 )
 نشر من قبل James Binney
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف James Binney




اسأل ChatGPT حول البحث

Galaxy models are fundamental to exploiting surveys of our Galaxy. There is now a significant body of work on axisymmetric models. A model can be defined by giving the DF of each major class of stars and of dark matter. Then the self-consistent gravitational potential is determined. Other modelling techniques are briefly considered before an overview of some early work on non-axisymmetric models.

قيم البحث

اقرأ أيضاً

67 - B. J. Maughan 2012
In this paper, we introduce PICACS, a physically-motivated, internally consistent model of scaling relations between galaxy cluster masses and their observable properties. This model can be used to constrain simultaneously the form, scatter (includin g its covariance) and evolution of the scaling relations, as well as the masses of the individual clusters. In this framework, scaling relations between observables (such as that between X-ray luminosity and temperature) are modelled explicitly in terms of the fundamental mass-observable scaling relations, and so are fully constrained without being fit directly. We apply the PICACS model to two observational datasets, and show that it performs as well as traditional regression methods for simply measuring individual scaling relation parameters, but reveals additional information on the processes that shape the relations while providing self-consistent mass constraints. Our analysis suggests that the observed combination of slopes of the scaling relations can be described by a deficit of gas in low-mass clusters that is compensated for by elevated gas temperatures, such that the total thermal energy of the gas in a cluster of given mass remains close to self-similar expectations. This is interpreted as the result of AGN feedback removing low entropy gas from low mass systems, while heating the remaining gas. We deconstruct the luminosity-temperature (LT) relation and show that its steepening compared to self-similar expectations can be explained solely by this combination of gas depletion and heating in low mass systems, without any additional contribution from a mass dependence of the gas structure. Finally, we demonstrate that a self-consistent analysis of the scaling relations leads to an expectation of self-similar evolution of the LT relation that is significantly weaker than is commonly assumed.
We formulate and calculate the evolution of dust in a galaxy focusing on the distinction among various dust components -- silicate, aromatic carbon, and non-aromatic carbon. We treat the galaxy as a one-zone object and adopt the evolution model of gr ain size distribution developed in our previous work. We further include aromatization and aliphatization (inverse reaction of aromatization). We regard small aromatic grains in a radius range of 3--50 AA as polycyclic aromatic hydrocarbons (PAHs). We also calculate extinction curves in a consistent manner with the abundances of silicate and aromatic and non-aromatic carbonaceous dust. Our model nicely explains the PAH abundance as a function of metallicity in nearby galaxies. The extinction curve become similar to the Milky Way curve at age $sim$ 10 Gyr, in terms of the carbon bump strength and the far-ultraviolet slope. We also apply our model to starburst galaxies by shortening the star formation time-scale (0.5 Gyr) and increasing the dense-gas fraction (0.9), finding that the extinction curve maintains bumpless shapes (because of low aromatic fractions), which are similar to the extinction curves observed in the Small Magellanic Cloud and high-redshift quasars. Thus, our model successfully explains the variety in extinction curve shapes at low and high redshifts.
We use Gaia DR2 systemic proper motions of 45 satellite galaxies to constrain the mass of the Milky Way using the scale free mass estimator of Watkins et al. (2010). We first determine the anisotropy parameter $beta$, and the tracer satellites radial density index $gamma$ to be $beta$=$-0.67^{+0.45}_{-0.62}$ and $gamma=2.11pm0.23$. When we exclude possible former satellites of the Large Magellanic Cloud, the anisotropy changes to $beta$=$-0.21^{+0.37}_{-0.51}$. We find that the index of the Milky Ways gravitational potential $alpha$, which is dependent on the mass itself, is the parameter with the largest impact on the mass determination. Via comparison with cosmological simulations of Milky Way-like galaxies, we carried out a detailed analysis of the estimation of the observational uncertainties and their impact on the mass estimator. We found that the mass estimator is biased when applied naively to the satellites of simulated Milky Way halos. Correcting for this bias, we obtain for our Galaxy a mass of $0.58^{+0.15}_{-0.14}times10^{12}$M$_odot$ within 64 kpc, as computed from the inner half of our observational sample, and $1.43^{+0.35}_{-0.32}times10^{12}$M$_odot$ within 273 kpc, from the full sample; this latter value extrapolates to a virial mass of $M_mathrm{vir,Delta=97}$=$1.51^{+0.45}_{-0.40} times 10^{12}M_{odot}$ corresponding to a virial radius of R$_mathrm{vir}$=$308pm29$ kpc. This value of the Milky Way mass lies in-between other mass estimates reported in the literature, from various different methods.
We have modelled the stellar and nebular continua and emission-line intensity ratios of massive stellar populations in the Antennae galaxy using high resolution and self-consistent libraries of model HII regions around central clusters of aging stars . The model libraries are constructed using the stellar population synthesis code, Starburst99, and photoionisation model, Cloudy. The Geneva and PARSEC stellar evolutionary models are plugged into Starburst99 to allow comparison between the two models. Using a spectrum-fitting methodology that allows the spectral features in the stellar and nebular continua (e.g. Wolf-Rayet features, Paschen jump), and emission-line diagnostics to constrain the models, we apply the libraries to the high-resolution MUSE spectra of the starbursting regions in the Antennae galaxy. Through this approach, we were able to model the continuum emission from Wolf-Rayet stars and extract stellar and gas metallicities, ages, electron temperatures and densities of starbursts by exploiting the full spectrum. From the application to the Antennae galaxy, we find that (1) the starbursts in the Antennae galaxy are characterised by stellar and gas metallicities of around solar, (2) the star-forming gas in starbursts in the Western loop of NGC 4038 appear to be more enriched, albeit slightly, than the rest of galaxy, (3) the youngest starbursts are found across the overlap region and over parts of the western-loop, though in comparison, the regions in the western-loop appear to be at a slightly later stage in star-formation than the overlap region, and (4) the results obtained from fitting the Geneva and Parsec models are largely consistent.
Spectral population synthesis (PS) is a fundamental tool in extragalactic research that aims to decipher the assembly history of galaxies from their SED. However, until recently all PS codes were restricted to purely stellar fits, neglecting the esse ntial contribution of nebular emission (NE). With the advent of FADO, the now possible self-consistent modelling of stellar and NE opens new routes to the exploration of galaxy SFHs. The main goal of this study is to quantitatively explore the accuracy to which FADO can recover physical and evolutionary properties of galaxies and compare its output with that from purely stellar PS codes. With this in mind, FADO and STARLIGHT were applied to synthetic SEDs that track the spectral evolution of stars and gas in extinction-free mock galaxies that form their stellar mass ($M_star$) according to different parametric SFHs. Spectral fits were computed for two different set-ups that approximate the spectral range of SDSS and CALIFA data. Our analysis indicates that FADO can recover the key physical and evolutionary properties of galaxies, such as $M_star$ and mass- and light-weighted mean age and metallicity, with an accuracy better than 0.2 dex. This is the case even in phases of strongly elevated sSFR and thus with considerable NE contamination. As for STARLIGHT, our analysis documents a moderately good agreement with theoretical values only for evolutionary phases for which NE drops to low levels. Indeed, fits with STARLIGHT during phases of high sSFR severely overestimate both $M_star$ and the mass-weighted stellar age, whereas strongly underestimate the light-weighted age and metallicity. The insights from this study suggest that the neglect of nebular continuum emission in STARLIGHT and similar purely stellar PS codes could systematically impact $M_star$ and SFH estimates for star-forming galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا